Page Menu

Interface of Evolution and Structure Based Drug Design

Our Lab

Constraining evolution and avoiding drug resistance

Our Lab Image.png

Drug resistance occurs when, through evolution, a disease no longer responds to medications. Resistance impacts the lives of millions, limiting the effectiveness of many of our most potent drugs. This often happens under the selective pressure of therapy in bacterial, viral and fungal infections and cancer due to their rapid evolution.

We combine a variety of experimental and computational techniques to understand the molecular basis of drug resistance. Our new paradigm of drug design minimizes chances of resistance. Realizing that disrupting the drug target’s activity is necessary but not sufficient for developing a robust drug that avoids resistance.

Meet the Lab

  

Research Focus

Strategies and Systems

Resistance.png

We use multidisciplinary approaches, combining crystallography, enzymology, molecular dynamics and organic chemistry, to elucidate the molecular mechanisms of drug resistance. Resistance occurs when a heterogeneous populations of a drug target is challenged by the selective pressure of a drug. In cancer and viruses this heterogeneity is partially caused APOBEC3’s. We discovered resistance mutations occur either where drugs physically contact regions of the drug target that are not essential for substrate recognition or alter the ensemble dynamics of the drug target favoring substrate. We leverage these insights into a new strategies in structure-based drug design to minimize the likelihood for resistance by designing inhibitors to stay within the substrate envelope. This strategy not only describes most of the primary drug resistance for HIV, Hepatitis C viral protease inhibitors and influenza neuraminidase, but is generally applicable in the development of novel drugs that are less susceptible to resistance.

Read More

  

Publications

PubmedPubs.jpg
Total: 1 results
  • NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations.

    Author(s): Ishima R, Kurt Yilmaz N, Schiffer CA
    Icon for Springer Related Articles

    NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations.

    J Biomol NMR. 2019 Jun 26;:

    Authors: Ishima R, Kurt Yilmaz N, Schiffer CA

    Abstract
    Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations.

    PMID: 31243634 [PubMed - as supplied by publisher]

All Publications

 

Follow our research, stay in touch – join the lab! 


Contact Us

Office:
Lazare Research Building 828
Campus Map (pdf)

Phone:
508-856-8008 (office)

Email:
Celia.Schiffer@umassmed.edu

Mailing Address:
University of Massachusetts Medical School
Attn: Dr. Celia Schiffer/BMP department
364 Plantation St LRB828
Worcester, MA 01605

Join Us

We are always interested in applications from qualified candidates at postdoctoral and research associate levels.

Read more here

Undergraduates interested in pursuing a PhD at UMass Medical School should apply directly to the Graduate School of Biomedical Sciences Program.

Additional Resources
click to open search panel