Search Close Search
Search Close Search
Page Menu

Spindle Orientation

A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation.

Majewski osteodysplastic primordial dwarfism type II (MOPDII) is caused by mutations in the centrosome gene pericentrin (PCNT) that lead to severe pre- and postnatal growth retardation [1]. As in MOPDII patients, disruption of pericentrin (Pcnt) in mice caused a number of abnormalities including microcephaly, aberrant hemodynamics analyzed by in utero echocardiography, and cardiovascular anomalies; the latter being associated with mortality, as in the human condition [1]. To identify the mechanisms underlying these defects, we tested for changes in cell and molecular function. All Pcnt(-/-) mouse tissues and cells examined showed spindle misorientation. This mouse phenotype was associated with misdirected ventricular septal growth in the heart, decreased proliferative symmetric divisions in brain neural progenitors, and increased misoriented divisions in fibroblasts; the same phenotype was seen in fibroblasts from three MOPDII individuals. Misoriented spindles were associated with disrupted astral microtubules and near complete loss of a unique set of centrosome proteins from spindle poles (ninein, Cep215, centriolin). All these proteins appear to be crucial for microtubule anchoring and all interacted with Pcnt, suggesting that Pcnt serves as a molecular scaffold for this functionally linked set of spindle pole proteins. Importantly, Pcnt disruption had no detectable effect on localization of proteins involved in the cortical polarity pathway (NuMA, p150(glued), aPKC). Not only do these data reveal a spindle-pole-localized complex for spindle orientation, but they identify key spindle symmetry proteins involved in the pathogenesis of MOPDII.

Rab11 endosomes contribute to mitotic spindle organization and orientation.

During interphase, Rab11-GTPase-containing endosomes recycle endocytic cargo. However, little is known about Rab11 endosomes in mitosis. Here, we show that Rab11 localizes to the mitotic spindle and regulates dynein-dependent endosome localization at poles. We found that mitotic recycling endosomes bind γ-TuRC components and associate with tubulin in vitro. Rab11 depletion or dominant-negative Rab11 expression disrupts astral microtubules, delays mitosis, and redistributes spindle pole proteins. Reciprocally, constitutively active Rab11 increases astral microtubules, restores γ-tubulin spindle pole localization, and generates robust spindles. This suggests a role for Rab11 activity in spindle pole maturation during mitosis. Rab11 depletion causes misorientation of the mitotic spindle and the plane of cell division. These findings suggest a molecular mechanism for the organization of astral microtubules and the mitotic spindle through Rab11-dependent control of spindle pole assembly and function. We propose that Rab11 and its associated endosomes co-contribute to these processes through retrograde transport to poles by dynein.

The cilia protein IFT88 is required for spindle orientation in mitosis.

Cilia dysfunction has long been associated with cyst formation and ciliopathies. More recently, misoriented cell division has been observed in cystic kidneys, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and are required for cilia formation in non-cycling cells. Several IFT proteins also localize to spindle poles in mitosis, indicating uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737(orpk) and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule clusters containing microtubule-nucleating proteins to spindle poles to ensure proper formation of astral microtubule arrays and thus proper spindle orientation. This work identifies a mitotic mechanism for a cilia protein in the orientation of cell division and has important implications for the etiology of ciliopathies.