William Kobertz, Ph.D.

Office: LRB 804
Phone: 508.856.8861

  • BMP faculty

William R. Kobertz, Ph.D.


Professor and BMP Graduate Director 
Graduate School of Biomedical Sciences
    Biochemistry and Molecular Pharmacology
    Interdisciplinary Program

Programs, Centers and Institutes
   Program in Chemical Biology



Project #1. Mapping K+ channel—partner protein interactions: Some K+ channels must co-assemble with membrane-embedded b-subunits for proper physiological function. In this project, we are mapping the protein-protein interactions between the KCNQ1 K+ channel and a family of transmembrane peptides: the KCNEs. To map out these protein-protein interactions, several different techniques will be used. These include, but are not limited to, membrane protein biochemistry, chemical modification, and electrophysiology.

Project #2. Assembly and trafficking of K+ channel complexes: Efficient assembly and trafficking of K+ channel complexes is critical for physiological function. Several mutations that prevent the assembly and trafficking of the KCNQ1-KCNE1 K+ channel complex give rise to cardiac arrhythmias and congenital deafness. This rotation project involves measuring the rates of ER-exit, cell surface internalization and recycling of wild type and mutant K+ channel complexes. These rates will be measured using cell surface and pulse-chase labeling methods. Immunofluorescence will also be utilized for visualization and co-localization of K+ channel complexes in fixed and living cells.

Project #3. Synthesis of Small Molecules for probing K+ channel structure and function: Several basic structure/function questions remain with K+ channel complexes: (1) What is the stoichiometry of a functioning complex? (2) Do multiple KCNE partnering proteins assemble with one K+ channel? (3) Do sub- or super-stoichiometric complexes exist? For this rotation project, we are synthesizing novel small molecule probes and using them in combination with electrophysiology to address these and other basic structural questions about K+ channel complexes.

â–´ Back To Top