
doi:10.1016/j.jmb.2012.03.005 J. Mol. Biol. (2012) 419, 255–274

Contents lists available at www.sciencedirect.com

Journal of Molecular Biology
j ourna l homepage: ht tp : / /ees .e lsev ie r.com. jmb
Improved Modeling of Side-Chain–Base Interactions and
Plasticity in Protein–DNA Interface Design

Summer B. Thyme1, 2⁎, David Baker 1, 3 and Philip Bradley 4⁎
1Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
2Graduate Program in Biomolecular Structure and Design, University of Washington, Seattle, WA 98195, USA
3Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
4Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
Received 29 November 2011;
received in revised form
9 February 2012;
accepted 9 March 2012
Available online
15 March 2012

Edited by M. Sternberg

Keywords:
computational modeling and
specificity redesign;
sequence recovery;
LAGLIDADG homing
endonucleases;
protein–DNA interaction
conservation;
experimental benchmarks for
computation
*Corresponding authors. S. B. Thym
Department of Biochemistry, Univer
Seattle, WA 98195, USA. E-mail add
sthyme@u.washington.edu.
Abbreviations used: RCSB, Resea

Structural Bioinformatics; PDB, Prot
ROSETTA energy unit.

0022-2836/$ - see front matter. Publishe
Combinatorial sequence optimization for protein design requires libraries of
discrete side-chain conformations. The discreteness of these libraries is
problematic, particularly for long, polar side chains, since favorable
interactions can be missed. Previously, an approach to loop remodeling
where protein backbone movement is directed by side-chain rotamers
predicted to form interactions previously observed in native complexes
(termed “motifs”) was described. Here, we show how such motif libraries
can be incorporated into combinatorial sequence optimization protocols
and improve native complex recapitulation. Guided by the motif rotamer
searches, we made improvements to the underlying energy function,
increasing recapitulation of native interactions. To further test the methods,
we carried out a comprehensive experimental scan of amino acid
preferences in the I-AniI protein–DNA interface and found that many
positions tolerated multiple amino acids. This sequence plasticity is not
observed in the computational results because of the fixed-backbone
approximation of the model. We improved modeling of this diversity by
introducing DNA flexibility and reducing the convergence of the simulated
annealing algorithm that drives the design process. In addition to serving as
a benchmark, this extensive experimental data set provides insight into the
types of interactions essential to maintain the function of this potential gene
therapy reagent.
Published by Elsevier Ltd.
Introduction

Advances in structural modeling algorithms for
protein–DNA complexes lay the groundwork for
functional predictions of these classes of interactions
and engineering efforts. For example, accurate
determination of binding specificity preferences for
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native complexes1,2 and estimations of the contribu-
tions of individual amino acids to the energetics of an
interface3 can promote a better understanding of
protein–DNA complexes and facilitate the next step:
the computational refactoring of these properties for
the development of tools for numerous biotechno-
logy applications. 4,5 Improved computational
methods have the capability to address the limita-
tions of sampling size and significant experimental
effort that constrain traditional combinatorial screen-
ing approaches6–8 for engineering novel protein–
DNA interactions. Currently, the main focus of
protein–DNA interface engineering efforts is the
reprogramming of DNA substrate specificity to alter
binding or cleavage locations in a genome.9 Prom-
ising platforms for generation of genome-specific
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cleavage reagents are zinc-finger nucleases,10 TALE
nucleases,11 and homing endonucleases or mega-
nucleases.12 While there are a number of diverse
experimental protocols to accomplish this engineer-
ing goal,6–8 the utilization of computationalmethods
has been shown to complement and improve the
efficiency of the experimental methods by guiding
library design or providing a starting place for
directed evolution.13–15
The ROSETTA macromolecular modeling and

design suite16 has been used for developing homing
endonucleases with novel specificities.9,17–19 RO-
SETTA depends on a physically based energy
function working in conjunction with a simulated
annealing sampling algorithm to identify mutations
in a protein that are likely to drive the formation of
favorable, sequence-specific protein–DNA inter-
actions.20 The general method for protein design
with a fixed protein and DNA backbone involves a
search of protein sequence and rotameric space to
identify the predicted lowest-energy set of amino
acid identities and conformations. Redesign for a
specific DNA sequence change consists of substitu-
tion of the nucleotide type in the crystal structure
DNA followed by redesign and repacking (search of
rotameric, but not sequence space) of the amino
acids surrounding this nucleotide change. A recent
improvement to the ROSETTA modeling of pro-
tein–DNA interactions was the incorporation of
backbone flexibility on both sides of the interface,
improving specificity predictions.1 Backbone flexi-
bility provides a way to further diversify design
results over the standard, fixed-backbone approxi-
mation available in release versions of ROSETTA.
While the use of ROSETTA has resulted in a number
of endonucleases with successfully altered speci-
(a) (b) (c)

Fig. 1. Examples of the types of motif interactions included i
are shown as spheres colored by atom type. (a) Tyrosine resid
Tyr25A and Thy317B of 1mow. (b) Bidentate arginine–guanine
(c) Water-mediated interaction identified by placement of wa
locations, derived from Ser47A and Ade516C of 1m5x. (d) Min
of 2np6.
ficities,9,17–19 consistent recapitulation of experimen-
tal data has proven challenging,17,19 suggesting that
many potentially successful designs are being over-
looked by current algorithms.
In this work, we developed methods for exploring

energetically relevant sequence diversity in order to
produce designs enriched in amino acids making
native-like interactions with the DNA bases. These
new methods are potentially valuable for guiding
design of libraries for experimental engineering
methods, and their success was evaluated by
comparison to a newly collected experimental data
set. The Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB)21

contains within it a wealth of information in the
form of the distances and geometries of protein–
DNA interactions (“motifs”) present in native
complexes (Fig. 1). This information was incorpo-
rated into the ROSETTA design process. Previously,
motifs had been used to direct protein backbone
sampling,22,23 and in this new implementation, they
are used to bias both sampling and energetics of
amino acid rotameric states in the context of a fixed
protein backbone. Comparisons of designs with and
without these native interactions helped guide
energy function improvements. New protocols for
increased diversity generation included differential
energetic and sequence-space biasing for rotamers
capable of forming canonical motif contacts, simu-
lations with flexible DNA,1 and reducing the
convergence of the simulated annealing algorithm.
The resulting predictions were analyzed in the
context of sequence recovery benchmarks and a
newly generated comprehensive experimental data
set that identified the tolerated sequence variation at
44 positions in one protein–DNA interface.
(d)

n the motif library. Atoms that define the motif interaction
ue packing against a thymine methyl group, derived from
interaction, derived from Arg274B and Gua418C of 1cyq.
ters (transparent blue spheres) on the DNA at canonical
or groove interaction, derived from Lys116A and Cyt16C
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Results

Improving sequence recovery with motifs

A library of canonical amino acid–base interac-
tions, referred to as motifs, was collected from
protein–DNA complexes available in the PDB (Fig.
1). Rotameric conformations of amino acid side
chains capable of forming interactions seen in that
motif library were identified through a newly
developed search process (Fig. 2). This process
scores the rotamers based on the distance between
a canonical base placed in the motif-forming
location and the closest base of the same type in
the crystal structure. The rotamers that can form
motif interactions, identified by a small distance
between the canonical base and the crystal struc-
ture base, are added, with an energetic bonus, to
the rotamer set used by the standard, fixed-
backbone ROSETTA design protocol. The size of
the rotamer library used in standard design
calculations is limited due to computational con-
siderations, and this search process allows assess-
ment of many more rotamers than could normally
be included. While only a small fraction of the
screened rotamers are added to the rotamer library
—the procedure is limited to 100 extra rotamers of
each amino acid type at each position—the
incorporation of these interaction-biased side
chains provides a way to increase exploration in
areas of sequence and rotameric space that are
most likely to result in the formation of native-like
contacts.
1. Rotamers 
formation of m
2. Rotamer p
added to pac
3. Rotamer w
found in desi

1 2

RMSD< 0.4
RMSD> 0.4

Fig. 2. Overview of the motif-biased design protocol. In ste
are compatible with the crystal structure undergoing design. T
distance of C1⁎, how parallel the placed base is to the crysta
example, two arginine rotamers (green and pink) are tested
rotamer passes a nucleobase RMSD cutoff of b 0.4 when an id
and compared to the nearest guanine base in the crystal str
standard rotamer sets used by the ROSETTA packer. The rota
found in a design completed for this guanine base.
In order to analyze the effect on design of adding
these motif-biased rotamers and determine the
optimal bonus value for them, we carried out
calculations for a set of 112 protein–DNA co-crystal
structures. This set was divided into a training set of
48 proteins and a test set of 64 proteins for assessing
the validity of protocol optimizations found to
improve results for the training set. The sequence
recovery for this test set, analyzed by two metrics
(“weighted” and “unweighted” recovery), is shown
in Fig. 3a for a range of motif bonus values. The
addition of motif rotamers was found to improve
the sequence recovery for both recovery metrics,
across multiple variants of the ROSETTA energy
function (Fig. 3a). Examining sequence recovery as a
function of the motif bonus term revealed that low
bonuses generally give the best results. Values of
−1.25 or −2.50 ROSETTA energy units (REUs; most
closely correlated with kilocalories per mole24),
depending on the other scoring parameters and
the recovery metric, resulted in optimal recovery.
Higher bonus values have reduced recovery due to
the incorporation of motif rotamers without regard
to other energy function terms. The motif bonus
resulting in the highest sequence recovery for the
weighted metric was slightly less than that for the
unweighted metric. The unweighted metric counts
every designed position equally and is thus subject
to a bias favoring incorporation of the amino acid
types most commonly found in protein–DNA in-
terfaces (such as those types in the motif library).
The weighted metric is an average over the
recoveries for each amino acid type and free from
biases in the amino acid composition of the interface
tested for 
otif interaction

assing cutoff 
ker with bonus
ith motif bonus 
gn

3

p 1, a series of rotamers and motifs are tested to see if they
hese rotamers and motifs are subject to a series of cutoffs:
l structure DNA, and RMSD of nucleobase atoms. In this
with a bidentate arginine–guanine motif, and the pink
eal guanine base is placed in a motif-compatible position
ucture. This pink arginine rotamer is then added to the
mer is given an energy bonus over other rotamers and is
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Fig. 3. Optimization of ROSETTA energy function. Abbreviations for energy function terms are as follows: fa_atr,
attractive; fa_rep, repulsive; fa_sol, solvation; fa_pair, distance-dependent atom pair potential; hbond_bb_sc, hydrogen
bonds between backbone and side-chain atoms; hbond_sc_sc, hydrogen bonds between side-chain atoms; fa_dun,
rotamer probability; p_aa_pp, probability of amino acid given backbone conformation; hack_elec, simple electrostatics;
lk_combined, combination of terms for orientation-dependent desolvation model. (a) A comparison to two metrics of
sequence recovery over several motif rotamer bonuses and several iterations of energy function optimization (Figs. S2–
S5). The “Standard” energy function was the starting point for the optimization. The “Standard” energy function was
improved by the addition of motifs, increasing the stringency of the hydrogen-bonding model (“Stringent HBonds”),
modification of the phosphorous desolvation penalty (“Phosphorous Desolvation”), and the addition of a coulombic
electrostatics term1 for the “Electrostatics” energy function. The “Final (“Optimized”)” energy function includes multiple
additional changes detailed further in the text and in the supplement. (b) Energy differences, separated out by energy
term, between incorrectly designed rotamers and rotamers with a motif bonus that match the native amino acid type, or
more correctly match the native rotamer, than a designed rotamer with no bonus. The units for these energy differences
are in REUs. The differences collected with the “Standard” energy function reveal that the solvation term (fa_sol) and the
rotamer probability term26 (fa_dun) are the two energy terms that are being offset by the motif bonus. As a part of the
energy function optimization, the solvation term was replaced with an orientation-dependent solvation model1

(lk_combined), and changes were made to the atom-specific desolvation parameters for several amino acid types.
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positions. Accordingly, the very high motif bonus
values were less detrimental to unweighted recov-
ery, which benefited from biases toward abundant
amino acid types, than to the weighted metric.
Optimization of the ROSETTA energy function

We next used the motif-biased design results to
guide optimization of the ROSETTA energy func-
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tion, improving sequence recovery significantly
over “Standard” scoring. The complete set of
modifications to the energy function resulted in a
high unweighted recovery of 50.7% with motifs
added, an increase of 20% over the initial “Stan-
dard” recovery of 29.6% with no motif rotamers or
optimization (Fig. 3a and Table S1). The recovery
pattern and the magnitude of the differences in
recovery observed for this test set are similar to
those changes seen for the training set, over the same
iterations of the energy function (Fig. S1).
Of these scoring improvements, many were

implemented specifically for modeling of protein–
DNA interactions, such as increase in the stringency
of the hydrogen-bonding model and correction of
the ROSETTA phosphorous desolvation25 parame-
ter (Fig. 3a).1 The combination of this corrected
solvation model and the increased hydrogen bond
stringency provides over 8% of the total 20%
improvement in unweighted recovery. The change
having the next largest effect was the replacement of
the database-derived, residue-pair potential (the
fa_pair term) with a simple, short-range explicit
electrostatics term.1 Recoveries with only this
“Electrostatics” modification are shown in Fig. 3a.
Both the electrostatics model and the motif bonus
favor charged interactions—charged residues are
overrepresented in the motif library due to their
abundance at protein–DNA interfaces—thus a
higher motif weight is less beneficial in the presence
of the electrostatics model (Fig. 3a, comparing
“Phosphorous Desolvation” to “Electrostatics”).
The “Final” optimized scoring function garners
further improvements in recovery of over 4%
unweighted (1.7% weighted). This finalized scoring
function is a composite of several smaller improve-
ments, the individual effects of which are detailed in
the supplement (Figs. S2–S5). These changes are (1) a
modification to the solvation model (lk_ball),
introduced by Yanover and Bradley,1 in which
desolvation contributions for polar atoms are
dependent on the relative orientation of the deso-
lvating atom; (2) the modification of desolvation
parameters for atom types found in asparagine,
glutamine, lysine, and arginine amino acids; (3) an
increased weight of the attractive (fa_atr) scoring
term; (4) an increased positive charge for the lysine
NH3 group as a proxy for an inability in ROSETTA
to differentially weight hydrogen-bonding types;
and (5) an optimization of the amino-acid-specific
reference energies.
This optimization of the ROSETTA energy func-

tion was guided in part by analyzing the biases in
the sequence recovery results. Examining the ratio of
the number of times an amino acid was designed to
the number of times it is found in the initial
population reveals amino acid types that are
underrepresented and overrepresented by the de-
sign process. All modifications to the desolvation
terms, as well as the increased positive charge of
lysine, were prompted by a low recovery of those
amino acid types and a corresponding low repre-
sentation of these types in the designs completed
using the energy function with only the electrostat-
ics term added. The sequence recoveries and amino
acid ratios leading to and resulting from each
modification are detailed in Figs. S2–S5. Optimiza-
tion of the amino-acid-specific reference energies,
representing the average energy of the residue in the
unfolded state, was also guided by looking for
biases in the distribution of designed amino acids.
In addition to correcting biases in amino acid

composition, a comparison between designs com-
pleted with and without motifs highlighted the
energy terms most in need of optimization. The
sequence recoveries of designs with a bonus on
motifs were higher than those without the added
motif rotamers. Determination of those energy
terms that were offset by the motif bonus helped
guide our energy function optimization. If a motif
rotamer of the native amino acid type is incorporat-
ed in a design and more closely matches the wild-
type rotamer than an incorrectly designed rotamer
without a motif bonus, the differences in energy
terms between the motif rotamer and the incorrect
rotamer can illuminate what terms are responsible
for favoring the incorrect rotamer. This analysis was
completed over the entire set of 112 designed
interfaces, and the results for the “Phosphorous
Desolvation” and “Final (“Optimized”)”weight sets
are shown in Fig. 3b. Energy differences with a
positive value are the ones being offset by the motif
bonus for the more correct rotamer choice. For the
starting energy function, the two energy terms that
are positively shifted are the solvation (fa_sol) and
rotamer probability26 (fa_dun). The final energy
function indicates that the design failures associated
with a solvation penalty were significantly corrected
by a combination of the modifications to desolvation
terms and the addition of the orientation-dependent
solvation model. Ways to correct the remaining
penalty associated with the rotamer probability
term are currently under study. These findings
correlate with the shift toward a preference for
lower motif weights in concert with higher sequence
recovery as the energy function was optimized. This
result indicates that more successful motif-like
interactions were being made without the aid of
such significant motif favoring as energy function
improvements were incorporated.

Sequence optimality of a wild-type endonuclease

A designed amino acid that does not match the
native sequence is not necessarily a failure of the
computational methods. Depending on the physio-
logical role of a DNA-binding protein, the wild-type
amino acid may not be the most energetically
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favorable. Some regions of a protein–DNA interface
may require low specificity and hence few direct
nucleotide contacts in order to accommodate mul-
tiple DNA bases—such as transcription factors that
must bind to multiple promoters.27 While some
protein positions in an interface require the wild-
type amino acid for activity or binding, other
positions can tolerate multiple amino acid types.
Without knowing the role and importance of each
amino acid in an interface, it is insufficient to use
sequence recovery of native interfaces as the sole
metric for determining the success of the computa-
tional methods. A straightforward way to address
this question is to make and characterize protein
mutations and to see if they are tolerated or
disallowed as computationally predicted. This
experiment was carried out for one protein in the
benchmark set, the homing endonuclease I-AniI.
Full randomization of each of 44 positions in the
interface of the homing endonuclease I-AniI and
screening of all single-position libraries for activity
against the wild-type target site was completed
using a bacterial directed evolution system.28

Sequencing ∼20 protein mutants for each library
(Table S2) after activity selection showed which
Fig. 4. Sequence optimality of the interface residues of I-An
amino acid type in a selected pool of sequences at each of 44 po
marked with a green box. Each position in the interface was f
subject to an activity selection.28 A frequency of 1 means that th
type observed at that protein position, whereas a frequency of
of 20 sequences.
positions tolerated only the wild-type amino acid
and which positions could accept a number of
amino acids.
The experimental data revealed that the wild-type

amino acid type is not highly favored over other
possibilities at many positions in the interface (Fig.
4). The calculated experimental recovery, an average
over all wild-type recovery frequencies, is 31%. Only
a few positions show very high preservation of the
wild-type amino acid. In the N-terminal domain,
only four arginine residues are preserved, certainly
contributing significant binding energy (R59, R61,
R70, and R72). In the C-terminal domain, preserved
residues include the position Arg243, stabilizing the
position of a C-terminal DNA-contacting loop
through interactions with the protein backbone,
and interacting amino acids Lys202 and Tyr154,
likely key contributors to formation of the catalytic
complex.18 The importance of these three C-terminal
residues for cleavage of this particular target DNA is
underscored by their complete conservation in
homologues of I-AniI predicted to cleave a very
similar target DNA sequence, even in those with
sequence identity of less than 50%.29 The other
aromatic residue positions on both sides of the
iI. Heat map displaying the frequencies observed of each
sitions in the I-AniI interface. The wild-type amino acid is
ully randomized, and these single-position libraries were
e amino acid with this frequency was the only amino acid

0.05 would be an amino acid type observed once from a set
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interface display higher conservation in this data set
than the majority of positions, with the exception of
Tyr192.While these aromatics did not always show a
high recovery of the exact native amino acid type,
they all displayed a tendency to remain an aromatic.
The frequency of recovering the wild-type amino
acid at each position is visually presented on the I-
AniI structure (2qoj30) using a gradient from red to
blue; positions that come back as wild type are
colored red, and the positions with very little wild
type observed in the sequencing results are blue (Fig.
5). The significant number of positions displaying
little or no preference indicates thatmany amino acid
substitutions in the I-AniI interface are functionally
neutral, at least in the context of this selection system.
The ability of the interface to accommodate such
neutral drift—the accumulation of non-deleterious
mutations with adaptive potential—has been impli-
cated as a mechanism for the acquisition of new
substrate specificities.29,31,32 This neutral drift facil-
itates enzyme adaptations by reducing the number
of mutations necessary to acquire new functions in
the face of evolutionary pressure and is particularly
important for the endonuclease family of proteins.
These DNA-cleaving enzymes are parasitic ele-
ments, catalyzing transfer of their own gene, and
their interface flexibility allows for their continued
propagation by facilitating cleavage of a wide range
of target sites that are themselves subject to genetic
drift.
Numerous positions show very low levels of wild-

type amino acid in the sequencing results (at or
N

C

N

R59

R61

R72

R70 E35

E148

S37
A68

Y27

Y18

Fig. 5. Visual representation of the interface conservation o
acid after full randomization and selection (Fig. 4) is summariz
randomized are shown in this representation. Blue correspo
corresponds to positions that are highly conserved as the wi
shown on the leftmost panel, and the N- and C-terminal dom
examination of the conserved contacts. Four arginine residues a
essential for formation of the initial substrate-bound complex. L
and these interactions likely play an important role in the fo
incomplete in that it loses information if the preferred amino
example, positions Tyr18, Tyr27, and Tyr162 are strongly cons
shows up at lower or equivalent frequencies as other aromatic
below 5% or 1 of 20 sequences), and understanding
how differences in frequency correlate with differ-
ences in enzyme activity is important for utilizing
this data set. When there is strong selective pressure,
the position converged almost completely to the
preferred sequence, such as in the case of the
magnesium-binding catalytic residue Glu148 that
was randomized as a control for the experiment
(Figs. 4 and 5). This assay of activity is also sensitive
to small differences in activity, as is demonstrated
by the data collected for position Lys200. K200R and
K200N were previously tested mutants, since they
were both observed in homologues of I-AniI and
shown to have levels of activity very similar to wild
type.29 Both mutants were found to be slightly more
active than the wild-type enzyme, and in this
current assay, both of them were found in the
selected pool with higher frequencies than the wild-
type lysine (0.55 for Arg, 0.09 for Asn, and 0.05 for
Lys). Given the extremely high activity of both
mutants, it was challenging to resolve whether one
was more active than the other with previously
published enzymatic cleavage assays.29 However,
arginine was by far the most common amino acid
observed at position 200 in an alignment of
homologous enzymes29 (Fig. S6), matching the
data here showing that it is observed more
frequently than any other amino acid in the selected
pool (Fig. 4). While the amino acid frequencies at
this particular position match those observed in a
multiple sequence alignment of endonucleases pre-
dicted to cut a very similar site to I-AniI, the majority
C
E148

Y154K202

R243

C150

A170

K200

Y192

Y162

f I-AniI. The frequency of observing the wild-type amino
ed on the structure of I-AniI. Only the 44 residues that were
nds to a frequency of 0 or non-conserved positions. Red
ld-type amino acid. The overall protein–DNA complex is
ains are separated in the other panels to allow for a closer
re most conserved in the N-terminal domain and are likely
ys202 and Tyr154 are conserved in the C-terminal domain,
rmation of the catalytic complex.18 This representation is
acid is not the wild type, but still a conserved type. For

erved as aromatic residues (Fig. 4), but the native aromatic
types, resulting in blue or green shading at these positions.

image of Fig. 5
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of the positions observed experimentally to have
high flexibility are significantly less variable in the
alignment (Fig. S6). The conditions of the bacterial
selection system differ from natural evolution, likely
resulting in this divergence between the alignment
and the results observed from the described
experiments. In particular, the bacterial system is
selecting only for activity on the wild-type I-AniI,
not for specificity against competing target sites or
lack of specificity at areas facilitating new specificity
acquisition, and artificial selections allow for full
randomization at any interface position, whereas
natural evolution generally traverses a pathway
constrained by single nucleotide substitutions in the
starting codon.

Two methods for sequence diversity generation

The high sequence diversity tolerated at many
positions in the I-AniI interface points to the need for
computational protocols that generate multiple,
energetically reasonable solutions rather than a
single design. Algorithms that produce only a
lowest-energy solution are constrained by sampling
and the quality of the energy function guiding the
design process. Methods are needed to generate
diverse structures, thus enabling new local minima
to be found. Diversity in design is valuable for
comparison to experimental data, as library-screen-
ing experiments rarely produce a single best protein
sequence for a given target and instead provide
several solutions. Multiple low-energy solutions can
also be screened concurrently in directed evolution
experiments.
Sequence D
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highest frequency amino acid is incorporated in the sequence
decrease for both weighted and unweighted metrics. If the t
considered in the recovery calculation, and observing that the w
correct, then the sequence recoveries are significantly increase
Two methods, DNA backbone flexibility and
reducing the convergence of the simulated anneal-
ing algorithm (“the packer”16) used by the ROSET-
TA, were developed and assessed in the context of a
computational benchmark and experimental data.
The DNA flexibility consisted of a 3-base-pair
pocket of movement surrounding the target design
base pair (Fig. 6a, “DNA-Rebuild”), and the
convergence of the packer was reduced by increas-
ing the low temperature of the simulated annealing
procedure and removal of the quenching step that
drives the packer to identify the sequence with the
lowest possible energy (“HighTemp-Packer”). Out
of the full set of 112 proteins, a complete set of
interface designs was collected with both of these
new protocols for 78 that were compatible with the
DNA-Rebuild methods in their current state. All
data were collected with the “Optimized” energy
function. No motif rotamers were added for these
computational experiments. A total of 56 designs
were completed for every design pocket (DNA base
pair and surrounding protein positions) that was
previously designed a single time with the standard
design protocols. The frequencies of amino acids
observed at each designable position were calculat-
ed over these 56 designs and compared to frequen-
cies from 56 designs completed with the standard
method.
The results of both protocols on the two sequence

recovery metrics revealed that the diversity pro-
duced often contains the wild-type amino acid,
even if it is not the most frequently observed type
at a particular position. If the top two amino acids
by frequency were considered when calculating
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Fig. 7. Recovery of experimental data with computational methods. A comparison between the two methods of
sequence diversity generation, DNA-Rebuild and HighTemp-Packer, is summarized on the structure of I-AniI. The
frequency distributions at each of the I-AniI interface positions were compared to the experimental data (Fig. 4) by both
Euclidean distance and Jensen–Shannon divergence measures (Table 1 and Fig. S8). For this illustration, the Jensen–
Shannon divergence measure33 calculated for the DNA-Rebuild method was subtracted from the same calculation
completed for the HighTemp-Packer. White is designated as a value of 0, indicating that neither computational method
better matched the experimental frequency distribution; green is negative values, indicating that the DNA-Rebuild
performed better than theHighTemp-Packer; and pink is positive values, indicating that theHighTemp-Packer performed
better than the DNA-Rebuild method. The DNA is colored based on the average RMSD between the DNA-Rebuild
simulations and the crystal structure DNA, where yellow is the lowest average RMSD and where blue is the highest. The
DNAmoved farthest away from the crystal structure DNA in the same area that the DNA-Rebuild method performs well
much less than the HighTemp-Packer, indicating that the DNA location has a significant effect on the design results.

Table 1. Comparison of computational protocols to
experimental data

Computational
method

Jensen–Shannon
divergence

Euclidean
distance

Standard 0.472 0.839
DNA-Rebuild 0.409 0.670
HighTemp-Packer 0.399 0.695

Divergence between experimentally observed and computation-
ally predicted amino acid frequency distributions at 44 positions
of the I-AniI protein–DNA interface was assessed using two
standard metrics for comparing probability distributions: the
Jensen–Shannon divergence33 and the Euclidean distance. A
lower divergence value indicates that the probability distributions
better match one another.

263Modeling and Plasticity in Protein–DNA Design
recovery, the chance of correctly identifying the
wild type is increased over 12% for both recovery
metrics (Fig. 6b). However, while the sequence
variation is much less for the 56 design runs with
the standard protocol, recovery with this original
method also improves by 8% when the top two
amino acids are counted, achieving a high of only
about 2% lower than the two new methods.
Looking at the top three most frequent amino
acids drastically increases the recovery gap be-
tween the original method and these new methods
that generate significant sequence diversity. The
HighTemp-Packer achieves a highest unweighted
recovery of 66.4%, a 7% improvement over taking
only the top two amino acids. The DNA-Rebuild
performs slightly less well, achieving only 64.3%
unweighted recovery, but still significantly out-
performs the original method that only shows a 2%
gain to 58.9% unweighted recovery. Computational
results that produce possible amino acid choices
rather than a single lowest-energy choice are
essential for building libraries to guide experimen-
tal engineering projects. However, the success of
building libraries based on this expanded sequence
pool requires that the added information increases
the chance of finding a native-like or low-energy
state rather than simply diluting the good se-
quences with inaccurately produced diversity. The
result that both of these new protocols significantly
improved sequence recovery when the second or
third highest frequency amino acids were added to
the recovery calculation argues that both protocols
could add valuable diversity to a designed library.
Comparisons to experimental data conducted in the
next section further explore the merits and limita-
tions of both methods.

Computational recapitulation of experimental data

Comparison of the experimental data with the
previously described computational protocols in-
dicates that neither of the new protocols stands out
as superior and that each method has different
strengths (Fig. 7 and Figs. S7 and S8). Both protocols
better recapitulate the experimental data than the
“Standard” design method (Table 133). The amino
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acid frequencies observed at some positions better
matched the frequencies from the DNA-Rebuild
simulations, and others better matched the results of
protocol utilizing the HighTemp-Packer. Both com-
putational protocols result in higher sequence
convergence, for wild-type amino acids as well as
incorrect amino acid types, than the experimental
selection. The two different methods of diversity
generation are able to drive escape from the
converged energy well for different positions in
the interface, indicating that they can each over-
come different types of protocol limitations (Fig. 7
and Figs. S7 and S8). For example, positions Ala68
and Ala70 are converged in the DNA-Rebuild
simulations, likely due to the conformation of the
protein backbone structure. The HighTemp-Packer
method was able to generate significant diversity at
both these positions that better matched the
experimental data. Some positions near the DNA
backbone benefited more from the DNA-Rebuild
simulation. Positions 37 and 172 show very high
convergence in the HighTemp-Packer results, and
the experimental data indicate that there should be
minimal amino acid preferences here. Both these
positions are directly interacting with the DNA
backbone in the crystal structure of the complex,
and the DNA-Rebuild method was able to repro-
duce this experimental variation by allowing DNA
backbone movement.
The failures of the DNA-Rebuild method are

focused on the (+) half of the DNA target site. The
interactions with this DNA half-site are implicated
in the formation of the catalytic complex;18 thus, it is
likely that preservation of the DNA conformation
observed in the crystal structure is essential for
maintaining activity. Many crystallized protein–
DNA complexes contain DNA that is perturbed
away from canonical B-form, presumably with a
functional purpose. The current implementation of
DNA energetics and rebuilding is not yet adequate
for capturing the subtleties of these more strained
DNA conformations. The DNA-Rebuild method
results in low recovery at several I-AniI positions
making (+) half-site interactions that do not show
significant variation in the experimental data. For
example, position Cys150 is maintained as a cysteine
or a serine in the experimental data, and the
HighTemp-Packer simulation almost exactly pro-
duces the frequencies observed experimentally for
these two amino acids. The DNA-Rebuild simula-
tion allows numerous amino acids to be incorporat-
ed at this position, as the DNAmoves away from the
crystal structure conformation. The experimental
data for position 150 indicates that maintaining the
conformation of the bases in this area is likely critical
to catalysis. Additionally, the two most conserved
residues in the (+) half-site, Lys202 and Tyr154, are
lost in most of the DNA-Rebuild simulations. Figure
7 shows that the DNA is rebuilt in such a way that it
moves away from the crystal structure conforma-
tion. This nonnative DNA conformation allows
alternative amino acids to be designed in this area.
It is likely that contributions of the DNA conforma-
tional state to catalysis in I-AniI are the cause of
these inaccurate computational rebuilds. A loss in
recovery with the DNA-Rebuild method for other
proteins in the benchmark set may similarly be
attributable to discrepancies between real and
modeled DNA conformational preferences, provid-
ing an avenue for improvement of ROSETTA's
modeling of DNA flexibility.

Escaping energetic minima with motif-based
sequence constraints

Both of the new protocols for diversity generation
fail to recover the experimentally preferred amino
acid at some I-AniI positions. One of the essential
arginine residues in the N-terminal domain, position
61, is highly conserved as the wild-type amino acid
and is not observed as arginine with any protocol.
Position 24 is a lysine in the native enzyme, and the
enzyme tolerates a lysine or a histidine. Neither the
DNA-Rebuild nor the HighTemp-Packer recapitu-
lates either of these two possibilities. The previously
discussed position 200 is known to be highly active
as a lysine (native), asparagine, or arginine, yet none
of these amino acids are observed in the computa-
tional results.
In order to understand the factors responsible for

these mis-designed residues in I-AniI, as well as
others in the full sequence recovery set, a modifica-
tion was made to the previously described protocol
for design with motif rotamers. This modified
protocol forces amino acid types at each designable
protein position to all of the types seen in motifs
selected for that position. For example, if both
arginine and lysine motifs passed the search proce-
dure for a particular position, the protocol would
produce a set of designs with the lysine amino acid
type fixed, but not any particular rotamer, at that
position, as well as a set with the arginine amino acid
type fixed. This sequence constraint can result in
sampling of higher-energy alternative structures that
better match the wild-type protein sequence, and
energetic analysis of these forced amino acids has the
potential to reveal why those positions are incor-
rectly designed without the constraint. In addition,
this protocol can be used to generate diverse
sequences, revealing many potential native-like in-
teractions instead of only the lowest energy one, for
seeding experimental libraries.
The motif-based sequence constraint method

revealed that there is a motif found for every one
of the described I-AniI failures. When position 24 is
forced to be a lysine, a motif rotamer is incorporated
into the design with a very similar conformation to
the native lysine (Fig. 8a). The competing low-
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Fig. 8. Motif-based sequence
constraints. (a) Lys24 in the I-AniI
interface (native rotamer, white) is
mis-designed to a glutamine (yel-
low). The motif-based sequence
constraint protocol revealed that
position 24 can be a lysine motif,
and the motif residue (blue) very
closely matches the native lysine.
(b) Arg61 in the I-AniI interface
(native rotamer, white) is mis-
designed to a glutamine (yellow).
The motif-based sequence con-
straint protocol revealed that posi-
tion 61 can be an arginine motif
(blue). (c) The motif-based sequence
constraint protocol showed that
position Lys200 in the I-AniI inter-
face (native rotamer, white) can be
a motif of any of the three amino
acid types previously identified to
be active at this position (arginine,
blue; lysine, purple; and aspara-
gine, green). (d) The alternative
low-energy design that disallows
any of the motifs in (c) to be
designed at position 200. The native
structure is shown in white, and the
design with K200V and D194K is
shown in yellow. (e) Abbreviations:
WT, wild type; AA, amino acid.
Flowchart summarizing the results
of the protocol that generates de-
signs with forced amino acid types
for each type of motif identified by
the motif search. The protocol was
completed only for protein posi-
tions that were considered to be true
failures of the computational
methods by a series of analyses.
The chart summarizes the motif
status, energetics, and rotameric
state of the designs at each of these
failed positions. Rotamers are con-
sidered similar to the wild-type
amino acid if they have an RMSD
of b0.8. (f) Energy differences cal-
culated between rotamers that re-
semble the wild-type amino acid
that has a motif rotamer incorpo-
rated with a bonus and between the
incorrectly designed amino acid
observed at this same protein posi-
tion in the lowest-energy design, as
marked on the flowchart in (e). The
repulsive energy term (fa_rep)
stands out at the biggest contributor
to the energy difference between
these rotamers.
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energy glutamine type is never seen in the experi-
mental interface screen. The difference in total
energy between the designs with the lysine and
the glutamine is only 0.6 REUs, and when compared
to all forced motifs, the design with the forced lysine
is the second lowest in energy. The dominant energy
term disfavoring arginine at position 61 (Fig. 8b) is
the probability of the amino acid given the backbone
conformation (p_aa_pp), having a value of 2.46
REUs for the arginine that is forced with the
sequence constraint protocol and −0.92 REUs for
the lower-energy glutamine type. At position 200, all
three of the known, high-activity amino acid types
(lysine, arginine, and asparagine) are found to be
motifs (Fig. 8c). However, none of these types is
designed with the standard motif protocols due to a
competing alternative design that incorporates a
valine at position 200 and a lysine at the nearby
position 194 (Fig. 8d).
It was first necessary to determine which interface

positions are likely to be the most important for
wild-type activity in the absence of experimental
data in order to test this motif-biased sequence
constraint protocol on proteins other than I-AniI.
Given the comprehensive and computationally
intensive nature of this protocol, it was additionally
necessary to limit its use to a subset of designs. The
training set was analyzed to determine the residues
that are true failures of the design protocol using a
set of metrics described in Materials and Methods.
These mis-designed positions are characterized as
failures because they are likely important amino
acids, as they are amino acids with significant
interaction energy, which are designed to a chem-
ically very different amino acid type. The protocol
identified 284 of the 3421 designed protein positions
from the training set to be failures, which was
further reduced to 252 when additional computa-
tional constraints due to protein size were taken into
account. These design failures were subjected to the
described protocol in which the motif residue types
are forced at each designable position. This proce-
dure revealed that, for 108 of the 252 positions, a
motif of the same type as the wild-type amino acid is
not even available (Fig. 8e). For the 144 of these
positions where the wild-type amino acid is present
in the motifs selected for that position, the number of
times that the design actually contains the motif
rotamer when the amino acid type is fixed as wild
type was found to range from 68 to 107, depending
on the motif scoring bonus. The rotameric state of
the amino acid making the motif contact was
additionally assessed.
For essentially all of the 144 designed positions

where a wild-type motif is available, an alternative
design sequence that lacked the wild-type amino
acid at that position was found to have a lower
energy. These designs with the total lowest-energy
scores were analyzed to determine the motif status
of the mis-designed position. Even for the lowest
motif scoring bonus, over half of the positions had a
motif rotamer incorporated at the failed position.
The components of the energy function were again
dissected for each failed protein position by com-
paring each component from the lowest-energy
design and from the design with the forced wild-
type amino acid, restricting to positions in which the
motif rotamer from the forced wild-type simulation
was similar to the native rotamer (Fig. 8f). The
results were significantly different from the previous
analyses of this type, as the repulsive score (fa_rep)
was found to be responsible for the majority of the
energy differences between the forced wild-type
amino acid and the alternative low-energy designed
rotamer. The rotamer probability term is no longer a
major component of these differences. These results
suggest that the energy function is favoring side
chains that are less tightly packed, alleviating the
clashes recognized in the high repulsive score.

Visual assessment of design failures suggests
future improvements

Human intuition is a valuable tool for assessments
of protein interactions.34 Visual analysis of the
designs in the training set was used as an additional
metric guiding the process of energy function
improvement. A large number of the true failures,
as determined by analysis described in earlier
sections and in Materials and Methods, were
visually evaluated in order to gain ideas for the
necessary next steps in computational method
optimization. While there are many reasons that a
design procedure may result in a nonnative amino
acid at a protein position, visual analysis of these
designs revealed recurrent themes. Four represen-
tative design examples are shown in Fig. 9a–d. Of
these four examples, one is included to demonstrate
how not all mis-designs of the wild-type sequence
should be considered failures (Fig. 9a), one was
corrected with the HighTemp-Packer sampling
strategy described in this work (Fig. 9b), and the
remaining two are the result of the fixed-backbone
approximation and not optimizing the starting
crystal structure in the ROSETTA energy function
prior to design (Fig. 9c and d).
For the three representative cases (Fig. 9b–d)

where the redesigned sequence is clearly suboptimal
to the wild-type sequence, small movements of the
backbone of the protein and DNA prior to design
would most likely correct the failures. The histidine
that was redesigned to an alanine (Fig. 9b) was lost
because of an excessively high penalty from the
rotamer probability term. The energetic contribution
of the rotamer probability is dependent on the
backbone structure; thus, subtle movement of the
protein backbone would likely correct this failure.
For the remaining two cases (Fig. 9c and d), the
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Fig. 9. Representative failures of
the computational methods. Native
structure, gray; designed struc-
ture, pink. (a) The designed lysine,
making a canonical contact with the
guanine nucleotide, is calculated to
interact more strongly with the
DNA than the wild-type glutamine
(Gln39, 1zs4), and no interactions
with neighboring protein positions
are lost from this substitution. (b) A
histidine (His97, 2fl3) is redesigned
to an alanine, and energetic analysis
revealed that the rotamer probabil-
ity term was mainly responsible for
the alanine preference. The High-
Temp-Packer method corrects this
failure, as the histidine is regained
in 71% of the design trajectories,
compared to 19% with the DNA-
Rebuild method. (c) An arginine
residue (Arg432, 1j1v), making
multiple contacts to both the pro-
tein and DNA backbone atoms, is
redesigned to a smaller aspartate
residue that makes no favorable
interactions. The atoms in the start-
ing crystal structure are very close
to each other, and the repulsive
clashes cannot be relieved without
backbone movement or minimiza-
tion. (d) A bidentate asparagine–
asparagine hydrogen bond is lost
(Asn70–Asn90, 2ex5). This failure is
also due to repulsive clashes with
the nearby protein backbone. (e)
Amount of atomic overlap Arg432
in the 1j1v crystal structure calcu-
lated using MolProbity.36–38 The
atomic overlap is shown with yel-
low and red dots, DNA is black,
side chains are cyan, and the
protein backbone is brown. This
analysis indicates that the protein

backbone and neighboring side-chain residues are clashing with Arg432. Backbone optimization would be required to
relieve the clash with the backbone. (f) Atomic overlap (yellow and red dots) between an asparagine residue (yellow) and
a hydrogen atom (gray) of the beta-carbon of a neighboring serine residue shown in cyan (2ex5, Asn90–Ser68). Hydrogen
bonding between this same serine residue and the other asparagine (Asn70–Ser68) of the bidentate asparagine pair is
shown with green dots.
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residues being incorrectly designed are all making
interactions with the surrounding protein residues.
It is possible that these positions provide protein
structural stability and thus binding-site pre-orga-
nization for these interfaces.35 The atoms making
the primary protein–protein interactions are clash-
ing, as determined by MolProbity,36–38 and con-
strained on multiple sides by the backbone of the
protein or DNA, thus prohibiting repacking and
instead favoring redesign to relieve repulsion (Fig.
9e and f). The findings for these two examples match
the results of the motif-based sequence constraint
protocol that the repulsive term was the major
source of the higher energy of the designs containing
the forced wild-type amino acid type (Fig. 8f).
Optimizing the crystal structures in the ROSETTA
energy function prior to design is one potential
solution to this issue, although this protocol would
need to be thoroughly assessed to ensure that it was
not generating a bias in the designed sequences for
the wild-type amino acids. One way to avoid this
artificially generated bias would be to optimize the
structures with a different energy function from an
external program.
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Discussion

In this work, a number of optimizations to
ROSETTA have been thoroughly characterized,
including energy function improvements and new
protocols for sampling diverse design sequences.
Limitations of the computation were illuminated,
some of which were addressed and others of which
still need to be corrected, and a series ofmethods and
analysis tools were developed to increase the ease of
such future endeavors. The question of reliability of
sequence recovery as a sole metric for energy
function improvement was explored in the context
of a particularly well-studied enzyme scaffold.
Recapitulation of experimental data is a more
relevant metric of protein sequence redesign success
than sequence recovery, as it removes the biases of
potentially overtraining for recovery of the amino
acid states observed in crystal structures and is a
more direct measure of the functional effect of
allowing a protein sequence to vary. There are
many factors contributing to the activity and
specificity of DNA-binding or DNA-cleaving pro-
teins, such as the transition between the bound and
unbound states and the role of neighboring DNA in
the formation of the active complex. A crystal
structure reveals one state of the interaction complex,
and a computational design tool meant to predict
sequence changes required to confer certain activities
should be assessedwith corresponding experimental
data, rather than recapitulation of this single, fixed
state. Utilizing this combination of experimental and
computational benchmarks has revealed several
avenues for continuing improvements of the design
methodologies. Additionally, the extensive experi-
mental scan completed in this work provides a better
understanding of a class of enzymes being actively
engineered as gene therapy reagents, and knowl-
edge on the mutability of each position in this
particular enzyme will inform future specificity
redesign projects.
The ROSETTA force field integrates physicochem-

ical energy terms and database-derived potentials in
order to guide sampling and selection of low-energy
amino acid sequences. Similarly, the incorporation of
interaction-biased motif rotamers into the standard
design process provides a way to integrate the
information available in the PDB with the energetic
guidance of the ROSETTA force field. The collection
of motifs can be considered as a step toward
formulating a recognition code39,40 for protein–
DNA interactions. The interactions in protein–DNA
interfaces are complex and shaped by the local
environment, suggesting that the information con-
tained inmotifs is best utilized in combinationwith a
tool for assessing the likelihood of a given motif in
the context of the entire interaction complex. The
method described in this work builds on a previous
approach in which the motif interaction is held
constant as the protein backbone is remodeled to
stabilize the desired contact.22,23 Temiz and Cama-
cho have recently described an alternative compu-
tational method for investigating this recognition
code that combines homology modeling and molec-
ular dynamics simulations to predict changes in
binding affinity for zinc-finger mutants.41 One
significant advantage of this approach over the
current ROSETTA methods is that explicit waters
were simulated at the interface, allowing for im-
proved modeling of water-mediated interface con-
tacts. The incorporation of explicit water into the
ROSETTA protein–DNA interface design calcula-
tions is currently under study.
While the addition of themotif rotamers improved

the results of the ROSETTA design protocol, the
optimization of the force field resulted in an even
more significant improvement. Indeed, as the force
field was iteratively improved, the optimal value for
the motif bonus term decreased, suggesting that the
new and modified energy terms were able to
preferentially reward native-like protein–DNA in-
teractions. While encouraging, these improvements
—when applied in the context of the standard, fixed-
backbone design simulation—did not enable suc-
cessful recapitulation of the variability seen in our I-
AniI experimental data set. To explore the potential
role of DNA backbone flexibility, we integrated a
recently described method1 for generating diverse
DNA conformations into our design protocols. Most
other programs for protein–DNA interface design,
such as FoldX,42 use a fixed-backbone model of the
DNA. While preliminary DNA minimization was
available in older versions of ROSETTA,2 this new
implementation of DNA flexibility is significantly
more flexible and provides for greater DNA back-
bone movement (due to the fact that Monte Carlo
fragment rebuilding simulations sample a much
larger conformational space than gradient-based
minimization initiated at crystal structure confor-
mations). Both this new method of sequence diver-
sity generation and the HighTemp-Packer method,
defined by an increase in the final temperature used
by the simulated annealing algorithm, improve
recapitulation of the experimental data set over
standard ROSETTA methods (Fig. 7).
In contrast to protein sequences generated by

computational design, the primary function of the
amino acids in a protein–DNA interface is not
always the stabilization of the lowest-energy state or
the tightest possible binding. There also may be a
range of binding affinities tolerated for maintaining
interface functionality. The wild-type amino acid
sequence may not always be the most energetically
optimal sequence position at the designed position
(Fig. 9a). It is challenging to determine whether the
seemingly native-like interactions in the design are
really compatible with the activity of the protein–
DNA complex. Native complexes are evolved for
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many functions other than tight binding. The only
way to fully assess the viability of the mis-designed
amino acids is through experimental characteriza-
tion. There are several positions in the I-AniI
interface where the wild-type amino acid is not the
most optimal (Fig. 4). For example, position 18 has a
significant preference for tryptophan over the wild-
type tyrosine, and the previously discussed position
200 shows high experimental recovery of arginine
instead of the wild-type lysine. In these two cases,
the preferred amino acid likely confers an increased
selective advantage through tighter substrate bind-
ing or catalytic complex formation. While these
positions are somewhat tolerant of substitutions,
they differ from themany highly tolerant positions in
the I-AniI interface in that they display a significant
preference for a particular amino acid type, rather
than allowing all amino acid types equally. A
successful computational design tool would capture
these nonnative energetic preferences while predict-
ing a lack of preference at the most flexible positions.
While it is currently challenging to determine which
classes of interface mutations are systematically mis-
predicted due to the limited size of our experimental
data set, we expect that recent work combining next-
generation sequencing technology with protein
selection43 will revolutionize studies of this sort
that attempt to correlate protein mutations with
functional characteristics.
The goal of our work is to develop protocols with

clear utility for future design projects. Minimizing
the starting structure into the native energy well to
alleviate predicted clashes in starting structures (Fig.
9) is likely to artificially enhance sequence recovery
by biasing toward the wild-type state. Without
proper benchmarks, preferably experimental data, it
would be challenging to ensure that this over-
optimization of the native state was not biasing the
results. In light of the experimental data collected for
I-AniI that revealed that a number of interface
positions tolerated multiple amino acid types, it is
likely that the relatively high sequence recovery of
50% is due to an over-optimization for the native
sequence in the context of the rigid, fixed-backbone
sequence design simulations. While native sequence
recovery has proven to be a powerful metric for
optimization of protein design scoring functions, its
use as the sole benchmark for protein design
sampling algorithms would likely penalize the
greater exploration of backbone diversity necessary
for successful design toward novel DNA target sites.
The experimental data are even an underestimate of
the acceptable sequence diversity, since only one
position is being allowed to change at a time.
Varying multiple positions simultaneously would
likely show even less conservation of the wild-type
sequence due to correlated changes. Computational
protocols producing 100% recovery of the wild-type
sequences would almost certainly be useless for
design purposes. Instead, it would be best to
perfectly recover the amino acids forming essential
interactions in the protein–DNA interface and have
low recovery and multiple solutions generated for
the more malleable positions.
Developing a way to perturb the starting crystal

structure on both the protein and the DNA side,
without biasing toward the native energy minima,
will be important for correcting the failures identi-
fied from the sequence recovery benchmarks (Fig.
9). There are a number of possible methods to
potentially adapt to provide an alternative method
of DNA movement that is less extreme than the
fragment insertion protocol tested here.24,44 Both the
loss in recovery when using the DNA-Rebuild
method and the comparisons to experimental data
indicate that less conformational freedom of the
DNA is likely to produce higher sequence recovery.
However, DNA movement is essential for design of
new DNA sequences and for predictions of ener-
getics and specificity involving indirect readout;45,46

thus, it is important to develop a reliable method for
accomplishing this goal. Adding protein backbone
flexibility will also be necessary for improving
recapitulation of experimental data and generating
diverse designed sequences.47,48 Flexible loop re-
gions of protein–DNA interfaces could benefit from
combining the motif-based approach described here
with the previously published method that rebuilds
protein backbones to accommodate rotamers that
can form motif interactions.22 The results of the
simulations completed with the HighTemp-Packer
showed promising recapitulation of the variation
observed in experimental data. However, the loss of
some of the strong motif-like interactions of I-AniI
when using this approach suggests that incorpora-
tion of the motif information could further enhance
the method. One potential way to increase the ease
of utilizing the motif information, especially for
systems other than protein–DNA interfaces, is to
incorporate the data about distances and angles of
interactions into a knowledge-based contact poten-
tial scoring function.49 For current design applica-
tions, we suggest an approach that combines subtler
DNA backbone optimization with the HighTemp-
Packer and motif rotamers. We hope that these
proposed improvements, in conjunction with the
newly developed methodologies and analysis tools,
will accelerate the progress of future design projects.
Materials and Methods

Computational tools

All protocols were implemented within the ROSETTA
molecular modeling package and will be available for free
academic use through the ROSETTA Commons. They are
currently available to institutionsparticipating inROSETTA
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Commons (or upon request), and the code revisionnumbers
are 44353 for trunk ROSETTA and 44354 for the version
with the energy function optimized here and the DNA-
Rebuild method (source/workspaces/blab/mini). The en-
ergy function was similarly optimized for trunk ROSETTA;
however, the orientation-dependent desolvation is not
available, and the reference energies differed (Fig. S9).
These two code versions and energy functions will be
integrated in a future release of Rosetta. The executables
currently available in both code versions are dna_motif_
collector for the generation of motif libraries and motif_dna_
packer_design for designing with a motif bias. The flexible
DNA simulations are currently limited to the workspaces
branch, and the executable that rebuilds the DNA and
designs with motifs is called dna_fragment_rebuild_with_
motifs. The designs completed with an increased tempera-
ture for the low temperature of the simulated annealing
algorithm and removal of the final quenching step for the
packer are based in the motif_dna_packer_design but require
the modification of two lines prior to compilation. These
changes are detailed in Supplementary Data. An additional
executable, failure_analyzer, for analysis of the design data
(failure identification, energy differences between designs)
is available in a later revision (source/workspaces/blab/
mini, revision 45873). Many parameters of all methods are
modifiable via the command line, and all currently available
options are discussed in Supplementary Methods. Other
data available upon request include, but is not limited to, the
final list of PDB codes used to generate the library, the
complete motif library either in a single file or in the form of
two-residue PDB files, and python analysis scripts (also
available in /source/workspaces/sthyme/scripts).

Structural data for training and test sets

A set of 112 largely nonredundant, crystallized protein–
DNA complexes all with a resolution of lower than 2.5 Å
was downloaded from the RCSB PDB.21 This set split into
one group of 48 complexes and another group of 64
complexes; the group containing 48 PDBs was used for
training the energy function, and the group containing 64
PDBs was used for testing and analyzing improvements
identified from the training procedure. All PDBs were
downloaded as the biological assemblies, and several
required small modifications for compatibility with the
subsequent Rosetta protocols and analysis scripts.
Training set: 1a1f, 1a3q, 1az0, 1bc8, 1bdt, 1bl0, 1ckq,

1d02, 1dc1, 1e3o, 1f4k, 1gd2, 1gu4, 1hcq, 1iaw, 1ig7, 1ign,
1j1v, 1jnm, 1lmb, 1lq1, 1m5x, 1mjo, 1mnm, 1mnn, 1nkp,
1ozj, 1pp7, 1puf, 1r4o, 1r71, 1r7m, 1skn, 1tc3, 1ubc, 1w0u,
1wte, 1zs4, 2bam, 2d5v, 2ex5, 2ezv, 2fl3, 2h27, 2hdd, 2oaa,
2qoj, 3pvi.
Test set: 1a1h, 1a73, 1aay, 1am9, 1b3t, 1b94, 1dfm, 1dmu,

1dp7, 1egw, 1g2f, 1g9y, 1hcr, 1hwt, 1i3j, 1jey, 1jft, 1k61,
1mey, 1mow, 1mus, 1nvp, 1oe5, 1oup, 1qpi, 1r0o, 1sa3,
1tup, 1xbr, 2bop, 2c9l, 2dgc, 2e52, 2fqz, 2o4a, 2odi,2or1,
2wt7, 2x6v, 2xqc, 2xsd, 2z3x, 3bm3, 3bs1, 3c25, 2co6, 3fc3,
2fdq, 3h0d, 3iag, 3igm, 3jtg, 3jxb, 3jy1, 3lnq, 3m4a, 3mln,
3mqy, 3mx4, 3n7q, 3o9x, 3pvv, 3qqy, 6pax.

Generation of motif library

A motif is defined as the spatial arrangement of six
atoms. In the case of a protein–DNA motif, three of these
atoms are located on a DNA base that interacts with a
protein residue, and the other three are derived from that
protein residue (Fig. 1). This geometric relationship is
expressed as a translation vector and a set of Euler angles,
as previously described.22 The atoms that define motifs
are currently fixed for different amino acid and DNA
residues. Motifs were collected from protein–DNA com-
plexes with a resolution of better than 2.8 Å that were
downloaded from the RCSB PDB on August 9, 2011. The
set initially consisted of 1459 complexes, which was
reduced to 1375 complexes after removal of PDBs that
were not compatible with Rosetta without manipulation
of the PDB files or modification of Rosetta.
The motif library used for this work includes both major

and minor groove interactions, as well as water-mediated
contacts. The collection algorithm is defined by iteration
over every protein residue in each of the protein–DNA
complexes and the identification of up to two DNA bases
that have the greatest amount of ROSETTA interaction
energy with that protein residue. This interaction energy
between the protein and the DNA residue is defined as a
packing score (combined attractive and repulsive ener-
gies), a direct side-chain–side-chain hydrogen-bonding
score, and a water-mediated hydrogen-bonding score, if a
theoretical water can be placed at a canonical location on
the DNA base.50 The protein–DNA pair must have either
a packing score of less than −0.5 REUs, a direct hydrogen-
bonding score of less than −0.3 REUs, or a water-mediated
hydrogen-bonding score of less than −0.3 REUs in order to
count as a motif interaction.
Redundancy in the motif library arises mainly from the

inclusion of multiple crystal structures of the protein–
DNA complex or from equivalent monomers of homo-
oligomeric complexes. The amino acid and DNA residue
pairs are all placed in the same coordinate frame, based
around the motif atoms of the DNA base, for all
interactions involving that type of DNA residue in order
to reduce this redundancy. Any DNA residue that has less
than 0.2 RMSD over the heavy atoms with any other DNA
residue is eliminated from the motif library.

Removal of homologous motifs from the motif library

Prior to identifying motif interactions that can be made
in a particular protein–DNA complex, it is necessary to
remove motifs derived from that same PDB entry or from
one of a homologous protein. The inclusion of such motifs
would result in artificial biases toward the native
sequence. The protocol developed for the removal consists
of a BLAST51 run against the PDB database that identified
all structures with an e-value of less than 0.05 to the
starting structure and a python script to parse the output
of the BLAST run and to remove homologous motifs from
the library.

Identification of rotamers forming motif interactions

The utilization of motifs in fixed-backbone protein
design requires the identification of amino acid rotamers
that are capable of forming a motif interaction in a given
protein–DNA complex. Backbone-dependent rotamers
derived from the Dunbrack rotamer library,26 included
with the ROSETTA software, are built at protein positions
in a protein–DNA interface in order to accomplish this
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goal. Interface positions are identified using a previously
described protocol17 that builds a set of arginine rotamers
at each protein position and checks whether any nucleo-
tide base atom is within 3.8 Å of these arginine side chains.
For this motif search protocol, the level of rotamer
sampling was set to include extra sampling at χ1–4, as
well as an additional four half-step deviations from the bin
of the rotamer. Each rotamer is screened against all nearby
DNA bases to test whether a motif interaction can be
made, and it must pass several cutoffs to be considered a
successful rotamer. First, a single atom from a canonical
DNA base defined by the motif being tested, currently the
C1⁎, is placed via the defined motif orientation. A distance
between this atom and every nearby C1⁎ in the crystal
structure DNA is calculated. Passing a defined distance
cutoff, set to be 2.0 Å for these experiments, allows the
rotamer to be subject to further testing. The next test
screens for how parallel a motif-placed canonical base is to
the closest crystal structure base by the calculation of a dot
product for vectors perpendicular to the plane of the six
atoms of a placed nucleobase and the crystal structure
nucleobase. The dot product for these experiments was set
to be greater than 0.97 to be considered for a final test of
the RMSD over the same six atoms of the nucleobase
compared with the nearby crystal structure nucleobase.
For these experiments, the RMSD had to be less than 1.0 in
order for the rotamer to be able to make a successful motif
contact. Both the distance and RMSD cutoffs are auto-
matically reduced for motifs with longer side chains that
have many more rotamers. Cutoffs for arginine are cut
twofold, and cutoffs for methionine, lysine, glutamate,
and glutamine are cut by a third. All rotamers passing the
cutoffs are then sorted, dependent on a combined score of
the RMSD and dot product (RMSD divided by dot
product), and the lowest scored rotamers are preferential-
ly considered to be successful if the user indicates a limit
on the number of rotamers to be utilized by further design
protocols. The default limit is set to be 100 rotamers of
each amino acid type at each protein position being
designed, and this default was maintained in the
experiments described here.
Motif-biased design

Rotamers identified to make motif interactions with the
search procedure described in the preceding section are
incorporated into the standard design procedure by
adding them to the rotamer set being used by the packer.
For these experiments, the initial rotamer set included
extra sampling of χ1 and χ2 and three one-third step
additional deviation samples for χ1 and χ2 of aromatic
residues. The packer provides the core functionality for
ROSETTA design, utilizing a Monte Carlo simulated
annealing algorithm, guided by a physically based
atomic-level force field.16 These motif rotamers are
flagged and can be given an energy bonus over other
rotamers in the rotamer set. The flag is implemented as a
residue patch called SpecialRotamer, and the energy term
special_rot allows for the user to implement differential
bonuses for these rotamers. Alternatively, there are input
options that support the definition of a starting motif
bonus and a subsequent number of steps of twofold
reduction of that bonus, producing multiple designs each
with a different bias toward inclusion of these rotamers.
The designs completed in this work cover the range of
bonuses from −10 to −1.25. Additional designs where
motif rotamers are added with no weight and where motif
rotamers are left out of the rotamer set are produced by
default. Identification of protein positions where mutation
of the protein sequence is allowed is described in the
section on collection of motif rotamers, as it occurs by the
same method. An additional shell of residues surrounding
these designable residues is allowed to change rotamer
conformation, but not protein sequence.
For the sequence recovery work, individual design runs

were done at every single base pair in the interface,
simulating the approach used for specificity redesign
where only a small group of amino acids are designed
simultaneously. Energy function analysis and optimiza-
tion was guided by sequence recovery calculations. Two
metrics, weighted and unweighted recovery, were calcu-
lated for each set of design calculations. The unweighted
metric counts every designed position equally, and the
weighted metric is an average over the recoveries for each
amino acid type and free from biases in the amino acid
composition of the interface positions. The inclusion of the
weighted metric during optimization is necessary to avoid
artificial improvements in overall recovery due to biasing
the energy function toward recovery of amino acids that
are overrepresented in protein–DNA interfaces, namely,
lysine and arginine, at the expense of the less abundant
types. A previously improved weight set17 that was
optimized without consideration of the weighted metric
contains this particular bias (Fig. S3).

Flexible DNA interface design

The use of the flexible DNA interface design protocol
was limited to computationally tractable PDBs that were
compatible with the DNA movement portions of the
protocol without any modification or reformatting. This
method consists of a previously described1 DNA rebuild-
ing step followed by a motif-biased design run. For each
targeted DNA design, that base pair and the two
surrounding base pairs were allowed to move. Unpaired
DNA base pairs, DNA strands containing chain internal
chain breaks, or base pairs on the end or one away from
the end of DNA chain were not included because they are
not compatible with the DNA rebuilding portion of the
protocol. After each design calculation, the rebuilt DNA
was allowed to minimize prior to the next design iteration
(between each round of lowering the motif bonus).
Rebuild set: 1a1f, 1a1h, 1a3q, 1aay, 1az0, 1bc8, 1bdt,

1bl0, 1ckq, 1d02, 1dc1, 1e3o, 1egw, 1f4k, 1g2f, 1gd2, 1gu4,
1hcq, 1hwt, 1i3j, 1ig7, 1ign, 1j1v, 1jnm, 1lq1, 1m5x, 1mey,
1mnm, 1mnn, 1nkp, 1oe5, 1ozj, 1pp7, 1puf, 1r0o, 1r71,
1r7m, 1sa3, 1skn, 1tc3, 1ubd, 1w0u, 1wte, 1xbr, 1zs4,
2bam, 2c9l, 2d5v, 2e52, 2ex5, 2ezv, 2fl3, 2h27, 2hdd, 2o4a,
2oaa, 2qoj, 2wt7, 2xsd, 2z3x, 3c25, 2co6, 3fc3, 3fdq, 3h0d,
3iag, 3jtg, 3jxb, 3lnq, 3m4a, 3mln, 3mx4, 3n7q, 3o9x, 3pvi,
3pvv, 3qqy, 6pax.

Identification of failed design pockets

The metrics designating an incorrectly designed posi-
tion as not being a true failure are as follows: (1) the correct
amino acid type being seen for over 25% of the design runs
from the set of designs completed with a varying motif
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weight, indicating that the wild type is favorable in the
context of a motif bonus; (2) the wild-type amino acid
making very little contact to any protein or DNA residue,
as defined by a total ROSETTA interaction energy with all
nearby residues of no more than −2 REUs; (3) the wild-
type amino acid being one of the smallest amino acid types
because native protein–DNA interfaces are not always
optimized for the tight binding and high specificity that
the computational methods are programmed to produce
and a small amino acid type being redesigned to a larger
one with more contacts is potentially an acceptable change
that could increase interface affinity; and (4) the designed
amino acid being chemically related to the wild-type
amino acid and likely to be making a similar contact, such
as a glutamate being redesigned to a glutamine. Future
implementations could utilize atom-type-specific analyses
for a more accurate assessment of contact success.

Bacterial screen

A bacterial screen for active variants of I-AniI was
completed as previously described,28 albeit with minor
modifications. Electrocompetent Escherichia coli cells, the
DH12S strain from Invitrogen, were transformed with a
pCCDb plasmid containing two adjacent copies of the I-
AniI LIB4 target site,30 a variant of the wild-type target site
containing two activating substitutions. This pCCDb-
containing strain was prepared for the selection using a
standard procedure for electrocompetent cell preparation.
Each of the 44 libraries, corresponding to the 44 interface
positions, was ligated, and the pCCDb-containing electro-
competent cells were transformed with the purified
ligation products. Transformants were recovered in
terrific broth media for a half-hour at 37 °C. The selection
procedure was completed for 4 h in 2 mL liquid culture at
30 °C. Following liquid selection, 1 μL was plated on each
of minimal selection (100 μg/mL carbenicillin, 1 mM
IPTG, and 0.02% L-arabinose) and control (100 μg/mL
carbenicillin) plates (1.5% agar, M9 salt, 1% glycerol, 0.8%
tryptone, 0.2% thiamine, 1 mM MgSO4, and 1 mM CaCl2)
and grown for ca 36 h at 30 °C. Approximately 20 colonies
were picked from each selection plate for each of the 44
positions, grown overnight in 96-well culture plates, and
submitted for sequencing as 96-well-plate glycerol stocks
to the GENEWIZ sequencing facility.

Construction of plasmids and libraries

The pCCDb plasmid containing the I-AniI LIB430 target
sites was built by phosphorylating and annealing oligo-
nucleotides from Integrated DNA Technologies to form a
duplex with sticky ends compatible with the NheI and
SacII restriction sites in the pCCDb vector.28 An amino
acid library was built for each of the 44 protein interface
positions, using assembly PCR52 with oligonucleotides
containing an NNS codon (Integrated DNA Technologies)
at the randomized position. These libraries were ligated
into pEndo vector28 between the NcoI and NotI restriction
sites and screened for activity in the bacterial selection
system. All C-terminal I-AniI libraries (starting at position
148) were built in the context of the activating M58

mutations, and all N-terminal mutations (from position 18
to position 72) were built in the context of M4, which is M5
without the I55V mutation.
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