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SUMMARY

During interphase, Rab11-GTPase-containing endo-
somes recycle endocytic cargo. However, little is
known about Rab11 endosomes in mitosis. Here,
we show that Rab11 localizes to the mitotic spindle
and regulates dynein-dependent endosome localiza-
tion at poles. We found that mitotic recycling endo-
somes bind g-TuRC components and associate
with tubulin in vitro. Rab11 depletion or dominant-
negative Rab11 expression disrupts astral microtu-
bules, delays mitosis, and redistributes spindle pole
proteins. Reciprocally, constitutively activeRab11 in-
creases astral microtubules, restores g-tubulin spin-
dle pole localization, and generates robust spindles.
This suggests a role for Rab11 activity in spindle
pole maturation during mitosis. Rab11 depletion
causes misorientation of the mitotic spindle and the
planeof cell division. Thesefindingssuggest amolec-
ular mechanism for the organization of astral mi-
crotubules and the mitotic spindle through Rab11-
dependent control of spindle pole assembly and
function. We propose that Rab11 and its associated
endosomes cocontribute to theseprocesses through
retrograde transport to poles by dynein.

INTRODUCTION

We recently showed that the recycling endosome (RE) GTPase,

Rab11, binds tomother centriole appendages in interphase cells.

REvesicles interactwith andorganize around theseappendages.

Endosome dissociation from centrosomes disrupts endosome

recycling (Hehnly et al., 2012). We hypothesized that REs may,

in turn, play a role in centrosome function. In fact, Rab11 was

identified in a screen for mitotic regulators of microtubule (MT)

dynamics in Caenorhabditis elegans (Zhang et al., 2008) and

was shown to require dynein for this function (Ai et al., 2009).

Rab11 is also an important regulator of endosome asymmetric

distribution in sensory organ precursor (SOP) cells during cell di-

vision (Emery et al., 2005). Rab11-vesicles have recently been

implicated in asymmetric spindle positioning in mouse oocytes

(Holubcová et al., 2013), but how Rab11-vesicles can directly

contribute to this process was not thoroughly investigated. How-

ever, the authors do propose that these vesicles function as cyto-

skeletal modulators (Holubcová et al., 2013). Here, we explore
Develo
possible functions forRab11 in the formation of spindle poles, as-

sembly of MT nucleating, MT anchoring, and regulatory proteins

at poles, organization of astral MTs, and orientation of mitotic

spindles and the plane of cell division.

RESULTS

Rab11-Associated Endosomes Associate with Mitotic
Spindle Poles and the Mitotic Spindle
Little is known of Rab11 and endosome function during spindle

formation in mitosis. We found that GFP-Rab11-decorated-en-

dosomes and the Rab11 effector, FIP3, clustered at spindle

poles and along the mitotic spindle (Figures 1A and 1B; Fig-

ure S1A available online; Movies S1 and S2) (noted in Hobdy-

Henderson et al., 2003 and Takatsu et al., 2013). Rab11 also

localized to isolated spindle poles demonstrating that it is a

bona fide centrosome protein (Figure S1D). In cells that were

cold treated (Figure 1C), which destabilizes dynamic microtu-

bules while preserving kinetochore MTs (Meunier and Vernos,

2011), Rab11 localized predominantly to kinetochore MTs (Fig-

ure 1C). This suggested that Rab11-associated endosomes

were bound to MTs and that they might possibly be transported

along spindle fibers to and from the pole. We established that

these Rab11 endosomes were, in fact, recycling endosomes

by staining for several additional RE proteins (Figures 1A–1C,

2A, and 2B). However, the early endosome Rab5 effector,

EEA1, and Golgi complex proteins did not localize to these

organelles (Figures 2C and S2B; Movie S2) (Golgi positioning

reviewed in Yadav and Linstedt, 2011).

The selective mitotic MT localization of Rab11 and its associ-

ated endosomes (Figures 1A–1C and S1A) was confirmed by

biochemical assessment of microtubule pellets (Figure S1B).

Mitotic MTs bound significantly more Rab11 than interphase

MTs due most likely to degradation of the Rab11 GTPase

activating protein (GAP), Evi5, which converts Rab11 to its

GDP-binding state (Laflamme et al., 2012; Dabbeekeh et al.,

2007; Eldridge et al., 2006) (Figure S1B). Consistent with the

MT association and GTP status of Rab11, was the observation

that forced expression of constitutively active Rab11(Q70L)

increasedMT-association over dominant-negative Rab11(S25N)

(Figure S1C). This suggested that the enhanced MT-association

of mitotic Rab11 could result from reduced Evi5 levels (Eldridge

et al., 2006) (Figures 1A and S1B) subsequently causing an in-

crease in active Rab11.

REs Contain MT-Nucleating Components and Dynein
To better understand the differences between endosomes in

mitotic versus interphase cells, we examined the molecular
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Figure 1. Recycling Endosomes Localize along the Spindle, Contain g-Tubulin, and Associate with an MT-Based Structure

(A) Cells expressing GFP-Rab11 were fixed during mitosis or interphase to visualize Rab11. DAPI, blue. Scale bar, 5 mm.

(B and C) Alexa Fluor 594-Tfn filled endosomes (B; red) and Rab11 (C; red) localize to the mitotic spindle and spindle poles. MTs, green; DAPI, blue. Scale bars,

5 mm. In cold-treated cells that maintain stable kinetochore-attached-MTs, Rab11 localized to MTs (C).

(D) Immunoblots of endosomes were isolated by floatation in a sucrose gradient and labeled for transferrin receptor (TfR) and Rab11. Endosomes cofractionated

with the centrosome proteins a- and g-tubulin, GCP4, Ran-GTP, and dynein intermediate chain (IC), but not with the cytosolic component GAPDH.

(E) Mitotic and interphase endosomes isolated by floatation were analyzed for associated Rab11, g-tubulin, and GAPDH. Mitotic endosomes contained

significantly more Rab11 and g-tubulin than interphase endosomes (n = 3 experiments). *p < 0.01; for representative immunoblot, see Figure S1E.

(F) Tubulin (10 mM) was incubated with or without isolated mitotic endosomes (green, decorated with GFP-FIP3), spun onto coverslips, and tested for

MT association. Endosomes showedMT association at 37�C, but not 4�C. Tubulin alone did not form an MT-based structure without endosomes present. Scale

bar, 3 mm.

(G) Isolated mitotic versus interphase endosomes (GFP-FIP3, green) were spun onto coverslips and tested for MT association/assembly (tubulin, red). Two

examples are shown for each. Scale bar, 3 mm.

(H) The percent of endosomes formingMT-based structures was quantified. Left: 25%ofmitotic endosomes formedMT-structures at 37�C, compared to�4%at

4�C (n = 3 experiments, p < 0.01). Right: 25% of mitotic endosomes formed MT-based structures compared to 0% in control (n = 4 experiments, p < 0.01).

See also Figure S1 and Movie S1.
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composition of isolated endosomes. Endosomes detected by

the presence of GFP-FIP3, a Rab11 effector that localizes to

spindle poles, and Rab11 itself (Figure S1A), were isolated via

flotation upward through a sucrose step gradient (Ori-McKenney

et al., 2012) (Figure 1D). Biochemical analysis of the mitotic

endosomes revealed proteins involved in MT organization (e.g.,

dynein) as well as MT nucleation, spindle pole organization,

and regulators of these processes (e.g., g-tubulin, a-tubulin,

GCP4, Ran-GTP) (Figure 1D). The specificity of spindle pole

proteins localization to endosomes was confirmed by showing

that GAPDH did not cofractionate with endosomes (Figures 1D

and S1E). The presence of a-tubulin in these isolated endosome

fractions (Figure 1D) is consistent with Rab11 pelleting in MT

pull-down experiments (Figure S1B).
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We found that isolated mitotic endosomes contained signifi-

cantly more Rab11 and g-tubulin than interphase endosomes

(Figures 1E and S1E). Notably, mitotic endosomes are enriched

at mitotic spindle poles/centrosomes compared to interphase

endosomes (Tfn-filled) (Movie S1). This suggested that mitotic

membranes may recruit more MT-nucleating components,

which is consistent with their potential role in centrosome

maturation. To directly address this, we tested MT nucleation

from isolated mitotic and interphase endosomes, as done for

Golgi vesicle MT nucleation assays in previous studies (Ori-

McKenney et al., 2012). Similar to Golgi MT nucleation, �25%

of mitotic endosomes assembled linear MT elements, which

were not present at 4�C (Figures 1F and 1H) or when nocoda-

zole was added (Figure S1F). Endosomes isolated from
Inc.



Figure 2. Recycling Endosomes Exhibit

Rab11-Dependent Spindle Pole Localiza-

tion and Dynein-Mediated Transport

(A) Maximum projections of mitotic cells after

nocodazole or mock treatment and 5 min after

nocodazole washout. Cells were fixed, stained for

g-tubulin (red) and FIP3 (green). Mock-treated

cells show FIP3 having spindle and pole localiza-

tion, whereas nocodazole-mediated MT disrup-

tion dispersed FIP3 from poles. Five minutes after

nocodazole washout, FIP3 refocuses at the spin-

dle pole and at acentrosomal foci (inset, labeled

with g-tubulin, red).

(B) Control (lamin siRNA) and Rab11-depleted

cells incubated with Alexa Fluor 594-conjugated

Tfn (red) to label endosomes. Most endosomes

focus around poles (MTs; green) in control cells,

but are dispersed in Rab11-depleted cells. DAPI,

blue. MT organization around poles was also dis-

rupted after Rab11 depletion (insets a0, b0, dis-
rupted endosomes with MTs, 53 original image).

Scale bar, 5 mm.

(C) Selected images from time-lapse movies of

GFP-FIP3-labeled REs (marked by open arrow-

head) moving toward and away from spindle poles

(spindle pole marked by closed arrowhead) and

dispersed RFP-EEA1 early endosomes remaining

fairly immobile (marked by white asterisk). Scale

bar, 1 mm. See also Movie S2.

(D) GFP-FIP3- and RFP-EEA1-decorated endo-

some track velocities were characterized. RFP-

EEA1 tracks moved at a decreased velocity

compared to GFP-FIP3 tracks (n > 30 tracks in

n = 3 cells for each condition).

(E) Selected still images from time-lapse movies

of GFP-FIP3-labeled REs moving toward spindle

poles in prometaphase cells. Left: a mock control

(DMSO only) prometaphase cell showing minus-

end directed motion of FIP3-decorated RE toward

pole (marked by open arrowhead; Movie S3).

Right: a dynein-inhibited (Firestone et al., 2012)

prometaphase cell with no minus-end mediated

transport occurring (endosomes marked by open

arrowhead). Schematic representation of shown

puncta is depicted below time course. Green point

represents when the vesicle starts moving, red point is when it stopped, and gray line is the path it took. Red circle labeled ‘‘SP’’ depicts where spindle pole is.

Scale bar, 1 mm.

(F) GFP-FIP3-decorated recycling endosome tracks were characterized in either a control or a dynein inhibitor-treated prometaphase cell. The dynein inhibitor

significantly decreased GFP-FIP3 endosome velocity (n > 40 measured tracks for each treatment, three cells measured per treatment).

See also Figure S2 and Movies S2 and S3.
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interphase cells showed little to no detectable MT nucleation

(Figures 1G and 1H).

Depletion of Rab11 or FIP3 Disrupts Endosome
Organization at Spindle Poles
To further test the mechanism of endosome localization to

spindle poles, we depleted Rab11 or FIP3 using previously

characterized siRNAs (Hehnly et al., 2012) (Figure S2C). In both

cases, the association of REs with spindle pole (Figures 2B,

S2B, and S2C) was decreased �3-fold compared with controls.

Depolymerization of MTs similarly decreased spindle pole

localization of REs (Figures 2A, 2B, and S2A) demonstrating a

requirement for MTs in organization or MT-dependent transport

of endosomes.
Develo
REs Require Dynein-Based Transport for Spindle Pole
Localization
To more directly distinguish between (1) binding of REs to spin-

dle poles via MTs at this site, or (2) transport of REs to spindle

poles via MTs, RE dynamics (TfR in Figure S2A; GFP-FIP3 in Fig-

ures 2A and 2C–2F; Tfn-filled in Movie S1) were examined in

living cells or in fixed cells over a time course. After spindle

MTs were disrupted by nocodazole, spindle reassembly was

imaged over a time course after drug washout. Spindle reassem-

bly in control cells was initiated by renucleation ofMTs from spin-

dle poles and reorganization of endosomes around the poles.

We found that endosomes reorganized around acentrosomal

peripheral microtubule clusters containing g-tubulin (Figure 2A,

modeled in Figure 3B) that formed in the cytoplasm and moved
pmental Cell 28, 497–507, March 10, 2014 ª2014 Elsevier Inc. 499



Figure 3. Rab11 and Dynein Coordinately

Organize Recycling Endosomes at Mitotic

Spindle Poles

(A) Cells treated with a dynein inhibitor (Firestone

et al., 2012), or depleted of lamin (control) or Rab11

were incubated with Alexa Fluor 594-conjugated

Tfn (red) to label endosomes.Mitotic cell maximum

projections are shown, and cells were stained for

the Rab11-effector FIP3 (green) specifically label-

ing REs. REs were dispersed with dynein inhibition

and Rab11 depletion. Scale bar, 5 mm.

(B) Model depicting REs together with MT clusters

contributing to spindle organization and function

by acting as a carrier to transport spindle pole

components to spindle poles by dynein-mediated

transport. RE transport to the spindle pole is

disrupted by either dynein inhibition or Rab11

depletion.

(C) Cells treated with dynein inhibitor or expressed

Rab11(S25N) had significantly less Alexa Fluor

594-conjugated Tfn (red) labeled endosomes

organized at mitotic spindle poles compared to

either a mock control (DMSO-treated) or cells

expressing Rab11(Q70L). Scale bar, 5 mm. A line

scan through the mitotic spindle poles (oriented

by g-tubulin staining, not shown) is drawn and the

integrated intensity is plotted for Tfn.

(D) Shown is quantification of Tfn intensity at

spindle poles (n = 25 poles per treatment, p values

marked on graph; representative of n = 3 experi-

ments). A significant increase in spindle pole

localized Tfn was observed in cells expressing

Rab11(Q70L) when compared to Rab11(S25N).

However, Rab11(Q70L) did not cause an increase

in Tfn in the presence of a dynein inhibitor.

(E) Endosomes isolated by floatation from

cells expressing Rab11(S25N) or Rab11(Q70L)

were compared for amounts of bound Rab11,

dynein, and FIP3. Mitotic endosomes containing

Rab11(Q70L) recruited significantly more dynein

and the Rab11-effector FIP3 than membranes

isolated from cells expressing Rab11(S25N),

(representative of n = 3 experiments, e.g., repre-

sentative western blots shown in Figure S3B).

See also Figure S3.

Developmental Cell

Rab11 Endosomes Assist in Spindle Organization
vectorially to spindle poles (Figures 2A and S2A). These observa-

tions suggested that endosomes were being transported on

spindle MTs as part of these MT clusters (Figures 2A and S2A;

modeled in Figure 3B), to become incorporated into spindle

poles. In our previous work, we showed that these MT clusters

carried centrosome proteins to spindle poles (Delaval et al.,

2011). Consistent with this notion is the observation that the

MT clusters in this study appear to be transporting endosomes

that we show contain centrosome proteins identified in our

biochemical assays (Figure 1D, colocalization between FIP3

and g-tubulin in Figure 2A).

We contend that endosomes are part of the MT cluster-based

transport pathway, as REs recruit the same/similar centrosome

proteins and move to spindle poles. Work on MT clusters

suggests that dynein may be the driving force for this process

(Delaval et al., 2011; Tulu et al., 2003). To directly test the role

of dynein in endosome movements, we examined the dynamics

of GFP-FIP3-labeled REs in mitotic cells. We observed move-

ment toward and away from the mitotic spindle poles (Figure 2C;
500 Developmental Cell 28, 497–507, March 10, 2014 ª2014 Elsevier
Movies S2 and S3). Endosomes moving toward the spindle pole

had an average velocity of 0.8 mm/s (Figure 2E; Movie S3). REs

were more motile than RFP-EEA1-labeled early endosomes,

which rarely organized at poles or moved in a poleward direction

(Figures 2C and 2D; Movies S2 and S3). To test the role of dynein

in these movements, we acutely inactivated the motor with a

specific membrane-permeable dynein inhibitor (Firestone et al.,

2012). This essentially abolished vectorial retrograde motion of

the GFP-FIP3 REs (Figures 2E and 2F).

Rab11 Regulates Endosome Organization at Mitotic
Spindle Poles through Dynein
To further analyze the role of Rab11 and dynein in recycling endo-

some organization, we either depleted Rab11, expressed a domi-

nant-negative Rab11 mutant, Rab11(S25N), expressed a consti-

tutive-active mutant, Rab11(Q70L), and/or treated cells with a

dynein inhibitor. We discovered that when Rab11 activity was in-

hibitedbyeither depletionorRab11(S25N)expression, the spindle

pole localization of REs was disrupted (Tfn-loaded, FIP3-labeled)
Inc.



Figure 4. Rab11 Plays a Role in Mitotic Progression

(A) Time-lapse imaging show Rab11-depleted HeLa cells stably expressing histone 2B RFP (H2B, red), entering mitosis as in control (lamin siRNA). However,

Rab11-depleted cells become delayed in prometa/metaphase. Scale bar, 20 mm. See also Movie S4.

(B) Quantification of cells that spent >60 min or <60 min in mitosis following lamin (control) or Rab11 depletion, or after expression of dominant-negative (S25N)

Rab11 (�5-fold decrease in <60 min, n > 3 experiments; p < 0.001 between lamin siRNA and Rab11 siRNA).

(C and D) Rab11-depleted cells spent more time in mitosis (2-fold, n > 75 cells, representative of n = 3 experiments, p value depicted on graph) compared with

lamin (control). The increased time spent in mitosis and asymmetric divisions can be rescued by an RNAi-resistant Rab11 construct. Scale bar, 20 mm.

(E) Asymmetric division, determined by cell flattening is increased in Rab11-depleted cells. p < 0.001, n = 3 experiments, asterisk indicating daughter cell that

flattened first (C).

See also Figure S4 and Movie S4.
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(Figures 2B, S2B, 3A–3D, and S3A;modeled in Figure 3B). Similar

results were obtained with the dynein inhibitor (Figures 3A–3C). In

contrast, expression of constitutive-active Rab11(Q70L) induced

tighter organization of endosomes at spindle poles (Figures 3C

and S3A), and in some cases fewer endosomes were observed

along the mitotic spindle (compare minus dynein inhibition to

Rab11(Q70L) expression in images and line scan of Figure 3C).

Based on these findings, we hypothesized that Rab11 re-

cruited dynein to mitotic endosome membranes. To test this,

we assessed whether Rab11(Q70L) could rescue endosome or-

ganization at mitotic spindle poles when dynein was inhibited.

First, we showed that Rab11(Q70L) expression increased spin-

dle pole-associated endosomes (Figure 3C; quantification in Fig-

ure 3D). We next determined that endosomes in cells expressing

Rab11(Q70L) and treated with a dynein inhibitor (Firestone et al.,

2012) were decreased to the same level as treatment alone (Fig-

ures 3C and 3D), suggesting that active-Rab11 recruits dynein

to mitotic endosomes. To address this more directly, we exam-

ined mitotic endosomes isolated from cells expressing either

Rab11(Q70L) or Rab11(S25N) (Figures 3E and S3B). Endosomes

from cells expressing constitutive-active Rab11(Q70L) recruited

Rab11(Q70L) and dynein but those from cells expressing domi-
Develo
nant-negative Rab11(S25N) recruited neither Rab11(S25N) nor

dynein. As a positive control, Rab11(Q70L) recruited its effector,

FIP3, to mitotic membranes where Rab11(S25N) did not (Figures

3E and S3B). These results suggest that active-Rab11 assists

in dynein recruitment to endosomes during mitosis (Figures 3B

and 3E).

Rab11 Is Involved in Mitotic Progression
During the course of these studies, we noticed that the preva-

lence of mitotic cells was increased when Rab11 activity was

disrupted. To formally address the origin of this phenotype, we

performed time-lapse imaging to determine the time spent in

mitosis in cells depleted of Rab11 or expressing dominant-nega-

tive Rab11 (Rab11(S25N) (HeLa cells in Figures 4A and 4B;

U2OS cells in Figures 4C–4E, S4A, and S4B). Cells were engi-

neered to express histone 2B-RFP (H2B) (Figure 4A; Movie S4)

to identify chromosome organization and mitotic stage. Eighty

percent of control cells (Figure 4B) or 60% of Rab11-depleted

cells rescued by expression of a siRNA-resistant Rab11 (Figures

4D and S2C) progressed into anaphase within 60 min. In

contrast, only �20% of Rab11-depleted or Rab11(S25N)-ex-

pressing cells entered anaphase within this time frame (average
pmental Cell 28, 497–507, March 10, 2014 ª2014 Elsevier Inc. 501



Figure 5. Rab11 Is Involved in Orientation of

the Mitotic Spindle

(A) Top: Rab11 depletion showed increased asym-

metric divisions bymeasuring spindle angle (dotted

line) relative to substrate (maximum projection of

the z axis, centrin [green], and kinetochores

[CREST, red]). Bottom: quantification showing a

significant increase (>20�) of spindle angle in cells

depleted of Rab11 (�2-fold, n = 3 experiments,

p < 0.001 comparing spindle angles >20� across

treatments. n > 20 cells counted/experiment).

(B) Longer astral MTs in constitutively active

Rab11(Q70L)-expressing cells compared to

dominant-negative Rab11(S25N)-expressing cells

revealed by staining for a-tubulin (green; a0 ).
Shown is quantification of astral MT length (n > 50

asters per treatment, p < 0.001; b0). Quantification

showing a significant increase (>20�) of spindle

angle in cells expressing Rab11(S25N) compared

to Rab11(Q70L) (n = 3 experiments; n > 20 cells

counted/experiment; c0).
(C) Z axis maximum projections of a cell ex-

pressing Rab11(Q70L) and/or incubated with a

dynein inhibitor (n = 3 experiments. n > 20 cells

counted/experiment).
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100–130 min; Figures 4B–4D and S4B). This mitotic delay was

confirmed by imaging live cells stably expressing cyclin B-GFP

to distinguish prometaphase from metaphase cells. As ex-

pected, cyclin B levels in control cells were highest in metaphase

and decreased sharply at anaphase onset (Lindqvist et al., 2009;

Chen et al., 2012). In contrast, cyclin B levels in Rab11-depleted

cells (Figure S4C) remained elevated for prolonged time periods,

demonstrating a metaphase delay.

Rab11 Plays a Role in Spindle Orientation
The mitotic delay following Rab11 disruption suggested a defect

inmitotic spindle organization and indicated that theGTPasemay

have additional mitotic functions. Closer inspection of mitotic

spindles inRab11-depleted cells revealed several defects in spin-

dle organization and function. Themost prevalent phenotypewas

misorientation of themitotic spindle and the plane of cell division.

More specifically, the spindle angle relative to the cell-substrate

adhesion plane in �60% of Rab11-depleted cells was >20�,
whereas most control spindles were parallel to the substratum

(�80%) (Figure 5A). In addition, we found that the cell division

plane was oriented more vertically in Rab11-depleted cells

compared to control cells where the division planewas horizontal

to the substratum (Figure 4C). The misoriented division plane

caused a delay in flattening of the daughter cell farthest away

from the substrate (Figure 4C; quantification in Figure 4E). To
502 Developmental Cell 28, 497–507, March 10, 2014 ª2014 Elsevier Inc.
determine the cellular andmolecular basis

of spindle and cell division misorientation,

we examined spindles in more detail.

Rab11 Plays a Role in Astral MT
Organization
Astral MT arrays in cells depleted of

Rab11 (data not shown) or expressing

dominant-negative Rab11(S25N) were
disrupted when compared to wild-type or constitutively-active

Rab11(Q70L)-expressing cells (Figure 5B). This was consistent

with the increased spindle angle in either Rab11-depleted cells

(Figure5A)orRab11(S25N)-expressingcells (Figure5B).Constitu-

tively activeRab11(Q70L) enhancedastralMTnetworks, substan-

tiating the importance of the GTPase state of Rab11 in the forma-

tionof theastralMTnetwork,which is thesubpopulationof spindle

MTs involved in contacting dynein at the cell cortex andmediating

spindle reorientation through dynein motor activity (Kotak and

Gönczy, 2013). Consistent with this is our finding that dynein

inhibition causes an increased spindle angle similar to Rab11-

depleted cells (Figure 5C). Constitutively active Rab11(Q70L)

could not rescue the spindle asymmetry phenotypes observed

under dynein inhibition (Figure 5C) compatible with dynein and

Rab11 coordinately regulating symmetric division.

Cell and Molecular Mechanism of Spindle Defects
following Rab11 Depletion
The localization of Rab11 to spindle poles and spindle MTs (Fig-

ures 1 and S1) and its role in mitotic progression and spindle

assembly (Figures 4 and 5) suggested a role for the GTPase in

spindle pole assembly and function. Rab11 depletion (Figures

6A–6D and S2C) or dominant-negative Rab11(S25N) expression

(Figure 6E) decreased spindle pole levels of major PCM proteins

(g-tubulin and pericentrin), MT-anchoring and plus-end binding



Figure 6. Rab11 Contributes to the Organization of the Mitotic Spindle

(A) Control or Rab11-depleted metaphase cells were stained for g-tubulin (red) and MTs (green). Scale bar, 10 mm.

(B) Loss of spindle pole proteins as indicated in Rab11-depleted cells was quantified (n = 3 experiments). Fold change was calculated over control (lamin siRNA).

A significant loss of g-tubulin, EB1, RanBP2, RanGTP, and pericentrin was observed in Rab11-depleted cells (n = 3; p < 0.001).

(C) Cells were depleted of lamin, FIP3, Rab11, or Rab11 complimented with siRNA-resistant Rab11. Metaphase cells were stained for g-tubulin (red), EB1 (green),

and CREST (blue). Scale bar, 10 mm.

(D) Spindle pole-associated g-tubulin and EB1 were decreased in Rab11- and FIP3-depleted cells, but not in control cells (lamin siRNA) or cells treated with

Rab11-siRNA rescued with an siRNA-resistant Rab11 vector (n > 25 poles per treatment; p values depicted on graphs). N.S., not significant.

(E) A significant increase in g-tubulin at spindle poles was observed in cells expressing Rab11(Q70L) when compared to Rab11(S25N) (n = 25 poles per treatment;

p < 0.001).

(F) Control prometaphase cells 5 min after nocodazole washout had robust MT-growth (green) from poles, whereas Rab11-depleted cells had a significant

number of MT clusters emanating from kinetochores (CREST, red) and little from poles (data not shown). Insets show kinetochores with MT clusters in Rab11-

depleted cells compared to none in control. Scale bar, 3 mm.

(G) Kinetochore fibers in cells expressing WT-Rab11, Rab11(S25N), and Rab11(Q70L) after cold treatment, fixation, and staining with anti-a-tubulin (MTs, green)

and kinetochores (CREST, red). Scale bar, 3 mm. Right: quantification of kinetochore fiber disruption following Rab11(S25N) expression. (n > 100 K-fibers per

treatment; p value depicted on graph).

See also Figure S5.
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proteins (EB1), and MT nucleation regulators (Ran-GTP and its

binding protein RanBP2), (�2-fold) (Figures 6A–6E and S5A). It

is important to reiterate that most of these proteins are, at least

in part, bound to endosomes (Figure 1). Equally important was

the observation that spindle pole levels of the centriolar protein

centrin (Figure 5A) and the MT-motor, Kif2a (Figure S5B) were

not affected by Rab11 depletion. These results demonstrate a

role for Rab11 in the organization of a selective subset of spindle

pole proteins, primarily those involved in centrosome matura-

tion, the process of centrosome protein recruitment initiated

during progression into mitosis and completed by metaphase

(Mahen and Venkitaraman, 2012). This rapid recruitment of

centrosome proteins drives a dramatic increase in MT-nucle-

ating activity (Bornens, 2012).

To further examine the roleofRab11 in centrosomematuration,

we performed a functional test monitoring both assembly of

centrosome proteins onto spindle poles and spindle-pole-medi-

ated MT-nucleating activity over time. Spindles were disas-

sembled with nocodazole, then examined at different times after

nocodazole washout for protein recruitment and MT nucleation

(Delaval et al., 2011) (Figure S5C). At 1 min of regrowth, spindle

poles in control cells showed an increased ability to nucleate

MTs and recruit the spindle pole proteins g-tubulin, pericentrin,

and EB1 (Figure S5C). These activities were impaired in Rab11-

depleted cells (Figure S5C). At 5 min of regrowth, control cells

nucleated MTs robustly from the poles. In contrast, Rab11-

depleted cells showed little nucleation at poles. Instead,MT clus-

ters assembled at kinetochores (Figure 6F). This finding suggests

that spindle poles in Rab11-depleted cells are compromised in

their ability to nucleate MTs thus allowing the kinetochore-medi-

ated MT-formation pathway to be activated or dominant. In con-

trol cells, when spindle poles are intact, no kinetochore MTs are

generated. This result also demonstrates that kinetochores are

intact and functional in Rab11-depleted cells and are not likely

candidates for chromosome misalignment. Eventually after

40 min, spindles were assembled with noncongressed chromo-

somes whereas control spindles had tight metaphase plates

(Figure S5D). It is important to note that the kinetochore-based

process of spindle assembly in Rab11-depleted cells is similar

to that in acentrosomal cells (Theurkauf and Hawley, 1992),

where spindle MTs grow from sites around kinetochores then

self-organize into a spindle (Heald et al., 1996; Theurkauf and

Hawley, 1992). Based on these findings and our live-cell video

microscopy (Figure 2), we conclude that Rab11 and its associ-

ated endosomes assist in spindle pole function by organizing

MT-nucleating components at this site (Figure 6).

To more closely examine kinetochore fiber integrity, we em-

ployed cold treatment to specifically eliminate dynamic MTs

from mitotic cells (Meunier and Vernos, 2011; Firestone et al.,

2012). Kinetochore fibers in control cells were well organized

and robust (Figures 6G and S5E). Following Rab11 depletion or

dominant-negative Rab11(S25N) expression, kinetochore fibers

were reduced to collections of small disorganized linear seg-

ments (Figures 6G and S5E). These results support the idea

that Rab11-depleted spindle poles are compromised in MT

nucleation andMT anchoring and likely releaseMTs as observed

(Figures 6G and S5E). Finally expression of constitutively active

Rab11(Q70L) generated longer kinetochore-based MTs than

cells expressing WT-Rab11 or Rab11(S25N) (Figure 6G). These
504 Developmental Cell 28, 497–507, March 10, 2014 ª2014 Elsevier
results demonstrate that the GTP state of Rab11 is important

for spindle pole-mediated MT nucleation and anchoring.

Rab11 Is Involved in Chromosome Alignment
In addition to spindle misorientation, Rab11-depleted cells

showed a significant increase in misaligned chromosomes

(�60%) (Figure S6A). Chromosome congression and alignment

requires both attachment of chromosomes to MTs and tension

on the chromosomes. It is important to note that tension on chro-

mosomes requires robust MT attachments, not only at kineto-

chores but also at spindle poles. MT attachment to poles is an

integral, but often unappreciated, part of the spindle assembly

process. We propose that disruption of spindle poles and spin-

dle pole generated MTs in Rab11-depleted cells (Figure 6) dis-

rupts chromosome attachments to spindle pole MTs (Figure 7).

Consistent with this are results showing that kinetochores are

not compromised by Rab11 depletion as they can induceMT for-

mation (Figure 6F) and activate the spindle assembly checkpoint

(SAC) (Figure 7). These compromisedMT attachments at spindle

poles could prevent the generation of tension at the chromo-

somes and thus activate the SAC. In fact, our data show that

the SAC is activated, as Mad1, ZW10, and BubR1 remained at

kinetochores in Rab11-depleted cells. There was no change in

the kinetochore kinesin, MCAK (Figures 7A and 7B), suggesting

that the kinetochores were structurally intact. We further found a

significant increase in dynein localization to kinetochores in

Rab11-depleted cells (Figure S6B).

We propose a model for chromosome alignment that is

controlled by Rab11. First, kinetochores in Rab11-depleted cells

are functional in that they are able to activate SAC and generate

and bind to MTs. It is unlikely that they are the cause of SAC acti-

vation. In contrast, spindle pole MT nucleation and anchoring

are disrupted, which can prevent or compromise MT spindle

pole attachments, (perhaps through the MT-nucleating protein

g-tubulin). This, in turn, could activate the SAC through the

inability to maintain tension at spindle poles. In fact, diminished

tension was revealed as a dramatic reduction in interkinetochore

distances (Figure 7C) and the presence of Aurora B at kineto-

chores flanked by two CREST-labeled puncta (Figure 7D), where

it senses tension (Howell et al., 2004; Famulski and Chan, 2007;

Lampson and Cheeseman, 2011).

DISCUSSION

This work has led us to unexpected functions of the Rab11

GTPase and its associated endosomes. First, our results provide

evidence for Rab11 function in the construction of spindle poles.

We propose that this occurs through dynein-mediated transport

of endosomes that, in turn, carries MT nucleating/anchoring and

regulatory proteins to the poles. In essence, Rab11 endosomes

act as carriers to recruit and organize MT-nucleating material at

spindle poles through dynein (Figures 1, 2, and 3). We believe

that this is particularly significant because previous studies sug-

gested that endosomes, like Golgi complexes and endoplasmic

reticulum disperse throughout the cytoplasm duringmitosis, and

membrane trafficking is thought to be halted until cytokinesis

(Foley and Kapoor, 2013; Yadav and Linstedt, 2011; Chen

et al., 2012). Second, when Rab11 is disrupted, the molecular

and functional integrity of spindle poles is compromised. This
Inc.



Figure 7. Rab11 Is Involved in Chromosome

Alignment

(A) The spindle assembly checkpoint proteins

BubR1, ZW10, and MAD1 (green) are maintained

on kinetochores (CREST, blue) in Rab11-depleted

cells compared to control; no difference in MCAK

was observed. Scale bar, 5 mm.

(B) Labeled checkpoint proteins were quantified

on individual kinetochores and normalized to

CREST. A significant increase in MAD1, BUBR1,

and ZW10 was observed (n > 200 kinetochores

per treatment; p values marked on graph). N.S.,

nonsignificant. Scale bar, 5 mm.

(C) MT attachments and tension were examined

by measuring the distance between two CREST

(red) puncta for n > 300 kinetochores, n > 25 cells.

Rab11-depleted cells displayed a 2-fold decrease

in the distance between kinetochores (�0.5 mm).

Refer to p values on graph. Scale bar, 5 mm.

(D) Noncongressed chromosomes in Rab11-

depleted cells revealed by staining for Aurora A

(blue), Aurora B (green, see insets from boxes),

and kinetochores (CREST, red). Representative of

n = 10 cells. Scale bar, 5 mm.

See also Figure S6.
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diminishes astral MT integrity and inhibits MT attachment to

cortical sites essential for orienting spindles. This work reveals

a function for Rab11 in spindle pole assembly and spindle orien-

tation. Third, compromised MTs at spindle poles in Rab11-dis-

rupted cells can explain the misaligned chromosomes, mitotic

delay, and activation of the SAC. Our results support a pathway

for activation of the SAC through poorMT attachments to spindle

poles. This pathway is conventionally thought to sense defects

in kinetochores-MT attachments, but we contend that poor MT

attachments can occur at kinetochores and/or spindle poles

(Zimmerman and Doxsey, 2000; Delaval et al., 2011; Firestone

et al., 2012). Compromised attachments at either site will prevent

MT tension, which is required to satisfy the SAC and permit

anaphase onset. The most compelling data for this additional

aspect of an old pathway is that kinetochore integrity and func-

tion is normal in Rab11 cells (MT nucleation, SAC activation,

presence of kinetochore proteins-MCAK, CREST, and p150;

data not shown) and is sufficient to drive spindle assembly

(at least the early stages) presumably through activation/domi-

nance of the acentrosomal kinetochore/chromatin-based

pathway. Within the same Rab11-depleted cells lies the centro-

some, which usually acts dominantly in vertebrate cells to drive

spindle assembly. However, the deleterious effects of Rab11

depletion compromise the centrosome presumably rendering it

inadequate for spindle assembly.
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EXPERIMENTAL PROCEDURES

Reagents and siRNAs are discussed in Supple-

mental Experimental Procedures.

Immunofluorescence

A human osteosarcoma cell line, U20S, HeLa-

GFP-FIP3 (kind gift fromDr. Rytis Prekeris, Univer-

sity of Colorado), HeLa-GFP-dynein heavy chain

(DHC, kind gift from Dr. Cheeseman, MIT),

HeLa-GFP-cyclin B/ H2B-RFP (kind gift from
Dr. Gerlich), or parental HeLa cells were cultured in D-minimal essential me-

dium (MEM) supplemented with 10% fetal bovine serum (FBS) and 100 U/ml

penicillin-streptomycin. HeLa (GFP-FIP3) was kept under selection conditions

with Hydromycin B (Sigma). U2OS or HeLa cells were grown to subconfluence

on glass coverslips and prepared for immunofluorescence, fixed using either

saponin extraction with formaldehyde or methanol (Hehnly et al., 2009). Im-

ages were taken on a Perkin-Elmer Ultraview spinning disk confocal micro-

scope: Zeiss Axiovert 200, 1003 Plan-APOCROMAT NA1.4 oil, DIC lens,

and Hamamatsu ORCA-ER camera. The entire fixed-cell volume was imaged

and displayed as a two-dimensional projection (Meta-Morph, Molecular

Devices) to ensure that all stained material was visible in two-dimensional

images.

Live-Cell Imaging

Cells were cultured on 35 mm dishes containing a central 14 mm 1.5 glass

coverslip (MatTek). Confocal microscopy was performed on a Solamere Tech-

nology Group CSU10B Spinning Disk Confocal System attached to a Nikon

TE2000-E2 motorized inverted fluorescence microscope. For GFP and RFP,

imaging frames were acquired every 100 ms using a Rolera MGi EMCCD

14-bit camera (Qimaging). MetaMorph (Molecular Devices) software was

used for equipment control, image acquisition, and image analysis.

Tracking Vesicle Movement

GFP-FIP3 particles were semiautomatically monitored for 50–100 frames

taken every 100 ms in a single z axis using MetaMorph. After configuring

MetaMorph to determine intensity centroids for each particle, up to 20 GFP-

FIP3 particles paths and velocities were measured per cell. We used 50 mm

of ciliobrevin for dynein inhibition (Firestone et al., 2012).
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Transferrin Endocytosis

U2OS or HeLa cells were treated with 10 mg/ml Alexa-Fluor 594-transferrin

(Tfn) as described (Hehnly et al., 2012, 2006). The cells were placed at

37�C. The amount of internalized Tfn was detected using fluorescent

microscopy.

Image Analysis

Z stacks are shown as 2Dmaximum projections (MetaMorph) or processed for

3D rendering (Imaris). Spindle pole fluorescence was quantified as described

for the kinetochore, along with kinetochore fluorescence (Howell et al., 2004).

Concentric circle regions defined by MetaMorph software (Molecular Devices)

were used to define the inner (centrosome or kinetochore) and outer area (local

background area was calculated as the difference between the outer and inner

circle areas). These circular areas contain the calculated integrated intensities.

Cells were counted for three independent experiments as described. Graphs

were created and statistical analysis was completed using GraphPad

Prism software. Bars represent SE, p < 0.05 was considered as statistically

significant.

Membrane Isolation

HeLa GFP-FIP3 cells were washed with a 8% sucrose, 10 mM Tris-HCl,

100 mM GTP, 100 mM ATP, 10 mM BME, and 1 mM PMSF (pH 7.4) buffer,

homogenized with a Dounce homogenizer, and spun at 5,000 3 g for

3 min to generate postnuclear supernatant. The postnuclear supernatant

was spun at 50,000 3 g to generate a membrane pellet, the membrane pel-

let was then resuspended to a final concentration of 50% sucrose and

layered beneath a sucrose step gradient from 40% to 15%. The gradient

was placed in the TLA 100.3 rotor and spun at 45,000 3 g for 2 hr at 4�C
(Hehnly et al., 2010). Fractions were collected and run on an SDS-PAGE

gel and the fraction containing endosomes saved for in vitro MT regrow

experiments.

In Vitro Microtubule Nucleation from Membranes

The microtubule nucleation solution assays were performed as described

with a few modifications (Ori-McKenney et al., 2012; Macurek et al., 2008).

GFP-labeled FIP3 endosomes were partially purified from mitotic cells by

membrane flotation through a sucrose step gradient, then incubated with

10 mM tubulin/tubulin-Cy3 (cytoskeleton; at a 10:1 ratio) and 1 mM GTP at

37�C for 20 min. The solution was incubated with 4% PFA and spun onto a

coverslip. GFP-FIP3-labeled endosomes were counted for Cy3 tubes.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.devcel.2014.01.014.
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