The Aging Heart: Age-related changes in cardiac structure and function

Kaditz 2012

The Aging Heart
Age-Related Changes in Cardiac Structure and Function

Emily Kaditz
UMMS Donald W. Reynolds Foundation
Summer Intern 2012

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation

Why Care About Pictures of the Normal Aging Process?

Images of Normal vs. Pathology

Almost no resources available

Why Should You Care?

The percentage of people 65 years and older is projected to rise from 13% to 20% between 2010 and 2030.

Regardless of the field of medicine you choose, you will treat more patients who are 65 years or older than any previous generation of physicians.

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation
Aging ≠ Disease

And disease is not inevitable with aging

However, the chance of developing some diseases increases with age…

This is a function of **HOMEOSTENOSIS**

![Diagram showing the relationship between normal young, normal aged, and disease](image)

---

**Homeostasis vs. Homeostenosis**

**Homeostasis** = the process through which the body maintains internal equilibrium.

- With aging, more physiologic reserves are needed to maintain homeostasis when the body is not at rest.

**Homeostenosis** = the normal decline in the body’s functional reserves.

- With aging, homeostenosis increases the vulnerability of organs to certain disease states, but a homeostenotic organ is not necessarily diseased.

---

**Homeostenosis** + **HOMEOSTASIS** = **HOMEOSTENOSIS**

![Diagram showing the relationship between physiologic reserves, physiologic limit, and homeostenosis](image)

Physiologic reserves allow us to maintain homeostasis in the presence of environmental, emotional, or physiological stress.

With homeostenosis, an insult that may be withstood in a younger person pushes the elderly beyond their functional capacity, causing decompensation, disease, or death.
The Aging Heart: Age-related changes in cardiac structure and function
Kaditz 2012

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation

Homeostenosis

- Exertion requires the body to engage its physiologic reserves.
- The homeostasis line can be thought of as the state of the heart at rest.
- Think of the red arrow as representing the physiologic reserve required to carry 20 lbs. up a flight of stairs.

Consider a Case…

A normal 78 year old woman comes in for her regular check-up. She reports feeling fine at rest, and is able to do most of her activities of daily living (ADL) without any problems. Recently, however, she has noticed that when carrying things up stairs in her home she becomes short of breath, and has even had to stop and rest if her load is too heavy.

What is causing her shortness of breath?
- It is normal for the capacity for physical exertion to decline with aging.
- In the heart, normal aging brings about changes that contribute to this decreased tolerance for exertion.

Homeostenosis in the Aging Heart

In other words, a homeostenotic heart is one that has undergone the normal aging process.

Compared with a normal young heart, the aged heart has a decreased functional capacity, but is not diseased.
Homeostenosis: Visual Evidence

While homeostenosis is a physiologic phenomenon, its anatomic basis can be seen on a gross and histological level. Let’s turn to consider this...

Quick Review: Heart Structure & Blood Flow

Cardiac Homeostenosis: Changes with Normal Aging

1. Structural
   a. ↑ LV wall thickness, ↓ LV chamber size
2. Histologic/Cellular
   b. Aortic valve calcification
3. Molecular
   c. Mitral annulus calcification
4. Functional
The Aging Heart: Age-related changes in cardiac structure and function
Kaditz 2012

Left Ventricular Structural Changes
↑ left ventricular (LV) wall thickness, ↓ LV chamber size

Valvular Changes

Valvular Changes

Cardiac Homeostenosis: Changes with Normal Aging
1. Structural
   a. ↓ # of cardiomyocytes
   b. (↑ apoptosis, necrosis)
   c. ↑ myocyte size (hypertrophy)
2. Histologic/Cellular
   d. ↑ lipid deposits
   e. ↑ lipofuscin deposition
3. Molecular
   f. ↑ collagen deposition and fibrosis in myocardium
4. Functional
   g. Thickening of arterial intima
The Aging Heart: Age-related changes in cardiac structure and function
Kaditz 2012

↓ Myocyte #, ↑ Myocyte Size (Hypertrophy)

Note: Clear spaces between the muscle fibers are artifacts due to slide processing and are not present in living tissue. Hypertrophic myocytes in the aged heart have a slight increase in inter-myocyte space.

↑ Lipid Deposits → Lipofuscin Deposition

Lipofuscin (black arrows) is a brownish "wear and tear" pigment that accumulates with age. The pigment is a product of lipid oxidation, and is a sign of free radical damage.

Thickening of Arterial Intima

UMMS CC License Guido Majno

UMMS CC License Guido Majno
Cardiac Homeostenosis: Changes with Normal Aging

1. Structural
2. Histologic/Cellular
3. Molecular
   a. Altered Ca\(^{2+}\) handling
   b. ↓ β-adrenergic responsiveness
4. Functional

Altered Ca\(^{2+}\) Handling

- At rest, intracellular Ca\(^{2+}\) is largely sequestered in the sarcoplasmic reticulum (SR). This is the same in the old and young heart (the figures above are mirror images of one another).
- Contraction of cardiac muscle depends on the release of Ca\(^{2+}\) from the SR.

Changes in Ca\(^{2+}\) Contribute to ↓ Contractility

- Changes in Ca\(^{2+}\) channel activity contribute to the prolongation of APs in the aged heart.
- These changes also decrease the Ca\(^{2+}\) stored in the SR, which means action potentials trigger a smaller rise in intracellular [Ca\(^{2+}\)].
The Aging Heart: Age-related changes in cardiac structure and function

Kaditz 2012

**↓ β-adrenergic Responsiveness**

Isoproterenol is a β-agonist (it stimulates β-receptors), similar to epinephrine (think of an adrenaline rush). Isoproterenol increases calcium release, and thus the force of myocyte contraction.

The decline in β-adrenergic responsiveness means that the aged heart gets less of a boost in contractility when stimulated by the sympathetic nervous system compared to the young heart.

---

**Cardiac Homeostenosis: Changes with Normal Aging**

1. Structural
2. Histologic/Cellular
3. Molecular
4. Functional
   a. ↑ Afterload
   b. Diastolic dysfunction
   c. Decreased contractility
   d. ↓ Maximum HR

This can contribute to LV hypertrophy (LVH).

**↓ Compliance of larger arteries**
**↓ Cross-sectional area of arterioles**
**↑ Systemic vascular resistance**

**↑ Afterload**

Q: What happens when a muscle is forced to work harder for an extended period?

This can contribute to LV hypertrophy (LVH). Look for it in lab!

---

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation
The Aging Heart: Age-related changes in cardiac structure and function
Kaditz 2012

LV Changes

- ↑ Afterload
- ↑ LV wall thickness
- ↑ LV stiffness
- ↓ LV chamber size

RF = risk factor for heart failure

LV Changes

1. ↓ LV filling in early diastole
2. ↑ Importance of the LA “kick” (atrial systole) late LV filling

LV stiffness
Diastolic dysfunction

1. LV filling in early diastole
2. Importance of the LA “kick” (atrial systole) late LV filling

LV stiffness
LV compliance
EDV

How would you expect decreased EDV to affect the aged heart?
Determinants of Stroke Volume

Recall Dr. Fahey’s lecture:

Any other consequences of a decreased EDV?

A smaller EDV means a smaller SV

Frank Starling & PV Curves

Parameters represented in the PV curve:

- EDV
- Preload

What about contractility?

Contractility decreases with age.

This is in part due to the molecular changes considered earlier:
1. Decreased β-adrenergic responsiveness
2. Impaired Ca²⁺ handling
The Aging Heart: Age-related changes in cardiac structure and function
Kaditz 2012

Functional Changes

So far we have seen that with normal aging, the heart cannot augment SV as effectively due to:

1. ↑ Afterload
2. Diastolic dysfunction
3. ↓ Contractility

These changes contribute to the decline in COmax that reduces the exercise tolerance of older adults.

\[ \text{CO} = \text{SV} \times \text{HR} \]

Now let's consider the last part of the equation.

Age-Associated Decline in Exercise Tolerance: Decreased HRmax

With aging, HRmax decreases progressively from age 10 by about 1 bpm per year.

\[ \text{HRmax} = 220 - \text{age} \]

Why?

So glad you asked! Let's find out.

What Determines HR at Rest?

Parasympathetic Tone

- Pacemaker cells of the sino-atrial node (SAN) depolarize spontaneously. In the young heart, the intrinsic heart rate (HRint) of pacemaker cell depolarization is about 100 bpm.

Then why is the average normal resting HR 70 bpm?

- The SAN is under control of the autonomic nervous system (ANS). At rest, parasympathetic input from the vagus nerve slows the rate of pacemaker cell depolarization from 100 to approximately 70 bpm.

> When parasympathetic input to the SAN is removed, HR increases to HRint.
Resting HR vs. Intrinsic HR

Evidence for a decreased intrinsic HR with age

- When vagal tone is removed from the aged heart, HR may only increase to 80 bpm.
- This is less than the increase to ~100 bpm seen in the young heart.

$\Rightarrow$ HR$_{int}$ decreases with aging.

But...

The resting HR of the aged heart is the same as that of a young heart: ~60 – 70 bpm.

What does this mean?

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation

Resting HR vs. Intrinsic HR

$\Rightarrow$ Vagal tone diminishes with aging.

- In a 20 y.o., HR$_{int}$ is ~100 bpm.
  $\Rightarrow$ At rest, vagal tone decreases HR by ~30 – 40 bpm.
- In an 80 y.o., HR$_{int}$ may be ~70 bpm.
  $\Rightarrow$ The effect of vagal tone is to decrease HR by ~5-10 bpm.

This is important because it means the aged heart gets a smaller increase in CO by removing vagal tone than the younger heart.

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation

Maximum HR

- HR rises above HR$_{int}$ when the SAN is stimulated by the sympathetic nervous system.
- The decreased HR$_{int}$, vagal tone, and adrenergic responsiveness all contribute to the decreased HR$_{max}$ of the aged heart.

This may be a more familiar depiction of the same concept.

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation
Back to Our Case...

Why is our 75 year old patient becoming short of breath during an activity that she used to be able to do without difficulty?

What changes have we considered that might account for her decreased tolerance for exertion?

Summary of Normal Physiological Changes During Exercise

Age-Related Cardiac Changes that Decrease Exercise Tolerance

Note: Ejection fraction is the clinically measured index of contractility.
Homeostasis

- Any exertion requires the body to engage its physiologic reserves.
- The homeostasis line can be thought of as the state of the heart at rest.
- Think of the red arrow as representing the physiologic reserve required to carry 20 lbs. up a flight of stairs.

Bibliography


Acknowledgements

Gary Blanchard, MD                  Megan Janes, MS2
Colleen Burnham, MBA*               Krista Johansen, MD*
Henri Cuenoud, MD*                  Mary Ellen Keough, MPH
Michael Fahey, MD                    Sarah McGee, MD*
Jerry Gurwitz, MD                   Erica Oleson, DO

*author

Advancing Geriatrics Education (AGE): A UMMS initiative funded by the Donald W. Reynolds Foundation