For the latest COVID-19 campus news and resources, visit umassmed.edu/coronavirus.

Search Close Search
Page Menu

Publication

  1. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism
    Shawn B. Egri, Christna Ouch, Hui-Ting Chou, Zhiheng Yu, Kangkang Song, Chen Xu, Kuang Shen, Mol Cell2022, 82, 1836-1849.
  2. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike
    Marco A Diaz-Salinas, Qi Li, Monir Ejemel, Leonid Yurkovetskiy, Jeremy Luban, Kuang Shen, Yang Wang, James B Munro, eLife, 2022, 11, e75433.
  3. Ribosome Profiling Reveals Novel Regulation of C9ORF72 GGGGCC Repeat-Containing RNA Translation
    Heleen M. van 't Spijker, Emily Stackpole, Sandra Almeida, Olga Katsara, Botao Liu, Kuang Shen, Robert J. Schneider, Fen-Biao Gao, and Joel D. Richter, RNA, 2022, 28, 123-138.
  4. mTOR-activating mutations in RRAGD are causative for kidney tubulopathy and cardiomyopathy
    Karl-Peter Schlingmann*, François Jouret*, Kuang Shen*, Anukrati Nigam, Francisco Arjona, Claudia Dafinger, Pascal Houillier, Deborah Jones, Felix Kleinerüschkamp, Jun Oh, Nathalie Godefroid, Mehmet Eltan, Tülay Güran, Stéphane Burtey, Marie-Christine Parotte, Jens König, Alina Braun, Caro Bos, Maria Ibars Serra, Holger Rehmann, Fried Zwartkruis, Kirsten Renkema, Karin Klingel, Eric Schulze-Bahr, Bernhard Schermer, Carsten Bergmann, Janine Altmüller, Holger Thiele, Bodo Beck, Karin Dahan, David Sabatini, Max Liebau, Rosa Vargas-Poussou, Nine Knoers, Martin Konrad, Jeroen de Baaij, J Am Soc Nephrol, 2021, 32, 2885-2899. (*: equal contribution)
  5. An interdomain hydrogen bond in the Rag GTPases maintains stable mTORC1 signaling in sensing amino acids
    Shawn B. Egri and Kuang Shen, J Biol Chem, 2021, 297, 100861.
  6. Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant
    Leonid Yurkovetskiy*, Xue Wang*, Kristen E. Pascal, Christopher Tomkins-Tinch, Thomas Nyalile, Yetao Wang, Alina Baum, William E. Diehl, Ann Dauphin, Claudia Carbone, Kristen Veinotte, Shawn B. Egri, Stephen F. Schaffner, Jacob E. Lemieux, James Munro, Ashique Rafique, Abhi Barve, Pardis C. Sabeti#, Christos A. Kyratsous#, Natalya Dudkina#, Kuang Shen#, Jeremy Luban#, Cell, 2020, 183, 739-751. (*: equal contribution; #: co-corresponding)
  7. Cryo-EM structure of the human FLCN-FNIP2-Rag-Ragulator complex
    Kuang Shen*, Kacper B. Rogala*, Hui-Ting Chou, Rick K. Huang, Zhiheng Yu, and David M. Sabatini, Cell, 2019, 179, 1319-1329. (*: equal contribution)
  8. C7orf59/Lamtor4 phosphorylation and structural flexibility modulate Ragulator assembly
    Nadia Rasheed, Tatiani B. Lima, Gustavo F. Mercaldi, Andrey F. Z. Nascimento, Ana L. S. Silva, Marcel Nakahira, Germanna L. Righetto, Liron Bar-Peled, Kuang Shen, David M. Sabatini, Fabio C. Gozzo, Ricardo Aparicio, and Juliana H. C. Smetana, FEBS Open, 2019, 9, 1589-1602.
  9. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases
    Kuang Shen, Max L. Valenstein, Xin Gu, and David M. Sabatini, J Biol Chem, 2019, 294, 2970-2975.
  10. RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway
    Jin-mi Heo, Alban Ordureau, Sharan Swarup, Joao A. Paulo, Kuang Shen, David Sabatini, and J. Wade Harper, Science Advances, 2018, 4, eaav0443.
  11. Ragulator and SLC38A9 activate the Rag GTPases through non-canonical GEF mechanisms
    Kuang Shen and David M. Sabatini, Proc Natl Acad Sci USA, 2018, 115, 9545-9550.
  12. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes
    Kuang Shen*, Rick K. Huang*, Edward J. Brignole, Kendall J. Condon, Max L. Valenstein, Lynne Chantranupong, Aimaiti Bomaliyamu, Abigail Choe, Zhiheng Yu, and David M. Sabatini, Nature, 2018, 556, 64-69. (*: equal contribution)
  13. Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability
    Kuang Shen, Abigail Choe, and David M. Sabatini, Mol Cell, 2017, 68, 552-565.
  14. The KICSTOR complex targets GATOR1 to the lysosomal surface and is necessary for nutrient starvation to suppress mTORC1
    Rachel L. Wolfson, Lynne Chantranupong, Greg A. Wyant, Xin Gu, Jose M. Orozco, Kuang Shen, Kendall J. Condon, Sabrina Petri, Jibril Kedir, Sonia M. Scaria, Wayne N. Frankel, and David M. Sabatini, Nature, 2017, 543, 438-442
  15. The CASTOR proteins are arginine sensors for the mTORC1 pathway
    Lynne Chantranupong, Sonia M. Scaria, Robert A. Saxton, Melanie P. Gygi, Kuang Shen, Gregory A. Wyant, Tim Wang, J. Wade Harper, Steven P. Gygi, and David M. Sabatini, Cell, 2016, 165, 153-164.
  16. Sestrin2 is a leucine sensor for the mTORC1 pathway
    Rachel L. Wolfson, Lynne Chantranupong, Robert A. Saxton, Kuang Shen, Sonia M. Scaria, Jason R. Cantor, and David M. Sabatini, Science, 2016, 351, 43-48.
  17. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
    Shuyu Wang, Zhi-Yang Tsun, Rachel L. Wolfson, Kuang Shen, Gregory A. Wyant, Molly E. Plovanich, Elizabeth D. Yuan, Tony D. Jones, Lynne Chantranupong, William Comb, Tim Wang, Liron Bar-Peled, Roberto Zoncu, Christoph Straub, Choah Kim, Jiwon Park, Bernardo L. Sabatini, and David M. Sabatini, Science, 2015, 347, 188-194.
  18. A diverse array of cancer-associated mTOR mutations are hyperactivating and can predict rapamycin sensitivity
    Brian C. Grabiner, Valentina Nardi, Kivanc Birsoy, Richard Possemato, Kuang Shen, Sumi Sinha, Alexander Jordan, Andrew H. Beck, and David M. Sabatini, Cancer Discovery, 2014, 4, 554-563.
  19. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting
    Yu-Hsien Hwang Fu, William Y C Huang, Kuang Shen, Jay T Groves, Thomas Miller, and Shu-ou Shan, eLife, 2017, 6, e25885.
  20. Analyzing single-molecule protein transportation experiments via hierarchical Hidden Markov Models
    Yang Chen, Kuang Shen, Shu-ou Shan, and Samuel Kou, J Am Stat Assoc, 2016, 111, 951-966.
  21. Signal Recognition Particle: An essential protein targeting machine (Review)
    David Akopian*, Kuang Shen*, Xin Zhang*, and Shu-ou Shan, Ann Rev Biochem, 2013, 82, 693-721. (*: equal contribution)
  22. Molecular mechanism of GTPase activation at the Signal Recognition Particle (SRP) RNA distal end
    Kuang Shen, Yaqiang Wang, Yu-Hsien Hwang Fu, Qi Zhang, Juli Feigon, and Shu-ou Shan, J Biol Chem, 2013, 288, 36385-36397.
  23. The structural basis of FtsY recruitment and GTPase activation by SRP RNA
    Felix Voigts-Hoffmann, Nikolaus Schmitz, Kuang Shen, Shu-ou Shan, Sandro F. Ataide, and Nenad Ban, Mol Cell, 2013, 52, 643-654.
  24. Mechanism of an ATP-independent protein disaggregase. II. Distinct molecular interactions drive multiple steps during aggregate disassembly
    Peera Jaru-Ampornpan, Fu-cheng Liang, Alex Nisthal, Thang X. Nguyen, Pengcheng Wang, Kuang Shen, Stephen L. Mayo, and Shu-ou Shan, J Biol Chem, 2013, 288, 13431-13445.
  25. SecYEG activates GTPases to drive the completion of cotranslational protein targeting
    David Akopian, Kush Dalal, Kuang Shen, Franck Duong, and Shu-ou Shan, J Cell Biol, 2013, 200, 397-405.
  26. Activated GTPase movement on an RNA scaffold drives cotranslational protein targeting
    Kuang Shen, Sinan Arslan, David Akopian, Taekjip Ha, and Shu-ou Shan, Nature, 2012, 492, 271-275.
  27. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting
    Kuang Shen, Xin Zhang, and Shu-ou Shan, RNA, 2011, 17, 892-902.
  28. The crystal structure of the signal recognition particle in complex with its receptor
    Sandro F. Ataide, Nikolaus Schmitz*, Kuang Shen*, Ailong Ke, Shu-ou Shan, Jennifer A. Doudna, and Nenad Ban, Science, 2011, 331, 881-886. (*: equal contribution)
  29. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit
    Peera Jaru-Ampornpan, Kuang Shen*, Vinh Q. Lam*, Mona Ali, Sebastian Doniach, Tony Z. Jia, and Shu-ou Shan, Nat Struct Mol Biol, 2010, 17, 696-702. (*: equal contribution)
  30. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting
    Kuang Shen and Shu-ou Shan, Proc Natl Acad Sci USA, 2010, 107, 7698-7703.
  31. Theoretical study on hydrogen bonding interaction of ureas and thioureas with imines
    Wen-Rui Zheng, Yao Fu, Kuang Shen, Lei Liu, and Qing-Xiang Guo, J Mol Struct – THEOCHEM, 2007, 822, 103-110.
  32. First-principle calculation of equilibrium cesium ion-pair acidities in tetrahydrofuran
    Yao Fu, Kuang Shen, Lei Liu, and Qing-Xiang Guo, J Am Chem Soc, 2007, 129, 13510-13519.
  33. Initiation of petroleum formation and antioxidant function - a DFT study of sulfur-sulfur bond dissociation enthalpies
    Lu-Feng Zou, Kuang Shen, Yao Fu, and Qing-Xiang Guo, J Phys Org Chem, 2007, 20, 754-763.
  34. Sulfur-sulfur bond dissociation enthalpies: a high-level ab initio study
    Lu-Feng Zou, Yao Fu, Kuang Shen, and Qing-Xiang Guo, J Mol Struct – THEOCHEM, 2007, 807, 87-92.
  35. What are the pKa values of C-H bonds in aromatic heterocyclic compounds in DMSO?
    Kuang Shen, Jia-Ning Li, Yao Fu, Lei Liu, and Qing-Xiang Guo, Tetrahedron, 2007, 63, 1568-1576.