PRODUCT MONOGRAPH

DOTAREM®
(gadoterate meglumine) Injection

For Intravenous Use

Gadolinium-Based Contrast Agent
For Use with Magnetic Resonance Imaging (MRI)

Guerbet LLC Date: August 26, 2013
120 W. 7th Street
Suite 108
Bloomington, IN, 47404
www.guerbet-us.com

GU08131069

© 2013, Guerbet LLC

® DOTAREM is a registered trademark of Guerbet
Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>PART I: HEALTH PROFESSIONAL INFORMATION</td>
<td></td>
</tr>
<tr>
<td>SUMMARY PRODUCT INFORMATION</td>
<td>6</td>
</tr>
<tr>
<td>PHYSICO-CHEMICAL CHARACTERISTICS</td>
<td>6</td>
</tr>
<tr>
<td>INDICATIONS AND CLINICAL USE</td>
<td>7</td>
</tr>
<tr>
<td>CONTRAINDICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>WARNINGS AND PRECAUTIONS</td>
<td>8</td>
</tr>
<tr>
<td>ADVERSE REACTIONS</td>
<td>9</td>
</tr>
<tr>
<td>DRUG INTERACTIONS</td>
<td>11</td>
</tr>
<tr>
<td>USE IN SPECIFIC POPULATIONS</td>
<td>11</td>
</tr>
<tr>
<td>DOSAGE AND ADMINISTRATION</td>
<td>12</td>
</tr>
<tr>
<td>OVERDOSAGE</td>
<td>14</td>
</tr>
<tr>
<td>CLINICAL PHARMACOLOGY</td>
<td>14</td>
</tr>
<tr>
<td>STORAGE AND STABILITY</td>
<td>16</td>
</tr>
<tr>
<td>DOSAGE FORMS, COMPOSITION AND PACKAGING</td>
<td>16</td>
</tr>
<tr>
<td>PART II: SCIENTIFIC INFORMATION</td>
<td></td>
</tr>
<tr>
<td>PHARMACEUTICAL INFORMATION</td>
<td>17</td>
</tr>
<tr>
<td>CLINICAL STUDIES</td>
<td>18</td>
</tr>
<tr>
<td>DETAILED PHARMACOLOGY</td>
<td>22</td>
</tr>
<tr>
<td>NONCLINICAL TOXICOLOGY</td>
<td>22</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>24</td>
</tr>
<tr>
<td>PART III: PATIENT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>PATIENT COUNSELING INFORMATION</td>
<td>25</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

DOTAREM® (gadoterate meglumine) was approved by the FDA on March 20, 2013. DOTAREM was chemically designed to be both a macrocyclic and ionic Gadolinium-based contrast agent (GBCA) for use with magnetic resonance imaging (MRI).

DOTAREM is the first and only GBCA that is both macrocyclic and ionic. DOTAREM's ionicity combined with its macrocyclic structure make it the most chemically stable of currently available GBCAs.

DOTAREM was first approved in 1989 (France). To date, approvals have been obtained in more than 70 countries worldwide.

The efficacy and safety of DOTAREM have been well characterized in a total of 49 clinical studies involving 2813 patients exposed to DOTAREM.

DOTAREM is indicated for intravenous use with MRI in brain (intracranial), spine and associated tissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity.

The most common adverse events reported during clinical studies were nausea, headache, injection site pain, injection site coldness, and burning sensation. Most adverse reactions were mild or moderate in severity and transient in nature. During clinical studies in pediatric patients, the most frequently reported adverse event was headache. Most adverse events were mild in severity and transient in nature and all patients recovered without treatment.

DOTAREM has a well-established safety profile supported by post-marketing experience from more than 37 million doses administered over 2 decades of approved use outside the U.S.

WARNING: NEPHROGENIC SYSTEMIC FIBROSIS (NSF)²

Gadolinium-based contrast agents (GBCAs) increase the risk for NSF among patients with impaired elimination of the drugs. Avoid use of GBCAs in these patients unless the diagnostic information is essential and not available with non-contrasted MRI or other modalities. NSF may result in fatal or debilitating fibrosis affecting the skin, muscle and internal organs.

- The risk for NSF appears highest among patients with:
 - Chronic, severe kidney disease (GFR < 30 mL/min/1.73m²), or
 - Acute kidney injury.

- Screen patients for acute kidney injury and other conditions that may reduce renal function. For patients at risk for chronically reduced renal function (e.g. age > 60 years, hypertension, diabetes), estimate the glomerular filtration rate (GFR) through laboratory testing.

- For patients at highest risk for NSF, do not exceed the recommended DOTAREM dose and allow a sufficient period of time for elimination of the drug from the body prior to any re-administration (see Warnings and Precautions).

The most common adverse events reported during clinical studies were nausea, headache, injection site pain, injection site coldness, and burning sensation. Most adverse reactions were mild or moderate in severity and transient in nature. During clinical studies in pediatric patients, the most frequently reported adverse event was headache. Most adverse events were mild in severity and transient in nature and all patients recovered without treatment.

DOTAREM has a well-established safety profile supported by post-marketing experience from more than 37 million doses administered over 2 decades of approved use outside the U.S.
GBCAs have been associated with a risk for NSF (see DOTAREM BOXED WARNING and Full Prescribing Information, Warnings and Precautions). NSF adverse events have been reported for use of DOTAREM in patients whose reports were confounded by the receipt of other GBCAs or in situations where receipt of other GBBAs could not be ruled out. NSF has not been reported in patients with a clear history of exposure to DOTAREM alone1,2.

DOTAREM will enter the US market in the class of GBCAs available for use with MRI.

Table 1: Gadolinium Chelates Approved for Use in the United States2,3

<table>
<thead>
<tr>
<th>Gadolinium Chelate</th>
<th>Type of Structure</th>
<th>Ionic/Non-ionic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTAREM* (gadoterate meglumine)</td>
<td>Macroyclic</td>
<td>Ionic</td>
</tr>
<tr>
<td>GADAVIST* (gadobutrol)</td>
<td>Macroyclic</td>
<td>Non-ionic</td>
</tr>
<tr>
<td>PROHANCE* (gadoteridol)</td>
<td>Macroyclic</td>
<td>Non-ionic</td>
</tr>
<tr>
<td>MULTIHANCE* (gadobenate dimeglumine)</td>
<td>Linear</td>
<td>Ionic</td>
</tr>
<tr>
<td>MAGNEVIST* (gadopentetate dimeglumine)</td>
<td>Linear</td>
<td>Ionic</td>
</tr>
<tr>
<td>OMNISCANTM (gadodiamide)</td>
<td>Linear</td>
<td>Non-ionic</td>
</tr>
<tr>
<td>OPTIMARKTM (gadoversetamide)</td>
<td>Linear</td>
<td>Non-ionic</td>
</tr>
</tbody>
</table>

Other points to consider in evaluation of DOTAREM:

- With DOTAREM, the macrocycle encircles the gadolinium ion, which is strongly bound due to its ionic bond with the ligand. Under in vitro conditions, this makes it less likely for free gadolinium release to occur.
- The relaxivity of DOTAREM is stable over the range of magnetic fields used in radiological practice (0.2-1.5T)2,4.
- DOTAREM has a relaxivity comparable to the other currently marketed GBCAs, ensuring optimal signal enhancement and MRI efficacy.
- DOTAREM has a stable physicochemical profile. In over 20 years of experience, no significant change has been observed in stability studies (no free gadolinium has ever been detected; no degradation impurity has ever been quantified).
- DOTAREM is rapidly distributed in the blood volume and extracellular fluid. It is not bound to plasma proteins and is excreted unchanged in urine.
- No safety concerns arose from single-dose and repeat-dose toxicology studies.
- No dose adjustment is required for any patient population. However, Gadolinium-based contrast agents (GBCAs) increase the risk for NSF among patients with impaired elimination of the drugs. Avoid use of GBCAs in these patients unless the diagnostic information is essential and not available with non-contrast MRI or other modalities. For patients at highest risk for NSF, do not exceed the recommended DOTAREM dose and allow a sufficient period of time for elimination of the drug prior to re-administration (see DOTAREM BOXED WARNING and Full Prescribing Information). In patients with chronically reduced renal function, acute kidney injury requiring dialysis has occurred with the use of GBCAs. The risk of acute kidney injury may increase with
increasing dose of the contrast agent; administer the lowest dose necessary for adequate imaging. Screen all patients for renal impairment by obtaining a history and/or laboratory tests. Consider follow-up renal function assessments for patients with a history of renal dysfunction.

- The benefit-risk assessment of DOTAREM is considered favorable based on clinical studies and post-marketing experience.
- A favorable benefit-risk assessment also applies to patients with severe renal impairment. However, GBCAs increase the risk for NSF among patients with impaired elimination of the drugs. Avoid use of GBCAs in these patients unless the diagnostic information is essential and not available with non-contrast MRI or other modalities. NSF may result in fatal or debilitating fibrosis affecting the skin, muscle, and internal organs.
 - The risk for NSF appears highest among patients with:
 - Chronic, severe kidney disease (GFR < 30 mL/min/1.73m²), or
 - Acute kidney injury.
 - For patients at highest risk for NSF, do not exceed the recommended DOTAREM dose and allow a sufficient period of time for elimination of the drug from the body prior to any re-administration (see DOTAREM BOXED WARNING and Full Prescribing Information, Warnings and Precautions).
PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

Table 2: Product Information Summary1,2

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form/Strength</th>
<th>Clinically Relevant Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous</td>
<td>Sterile, clear, colorless to yellow solution, containing 0.5 mmol/mL (376.9 mg/mL) of gadoterate meglumine injection supplied in vials or pre-filled syringes</td>
<td>None, No preservative added</td>
</tr>
</tbody>
</table>

PHYSICO-CHEMICAL CHARACTERISTICS1

DOTAREM is a unique ionic macrocyclic gadolinium complex in which the presence of the 7 unpaired electrons in the gadolinium ion Gd3+ is the origin of its paramagnetic activity, with a shortening of the longitudinal relaxation time T1, providing improved image contrast vs. unenhanced image1,2.

The macrocyclic chelates offer a strong binding to Gd3+ by the virtue of their pre-organized rigid ligands of optimal size to cage the gadolinium atom. Compared to non-ionic preparations, the ionic chelates are more stable as the binding between Gd3+ with the negatively charged carboxyl group is stronger. Both thermodynamic stability constants (log K\textsubscript{therm} and log K\textsubscript{cond} at pH 7.4), which reflect the affinity of Gd3+ for its ligand, and kinetic stability values (dissociation T\textsubscript{1/2}), which reflect the kinetic of the chelate dissociation, are important to describe the stability of the chelates. The higher the value of these measurements the higher is the stability of the chelation.

Considering both parameters, the most stable GBCAs are the ionic-macroyclic chelates and the least stable agents are the non-ionic linear chelates (Table 3).
Table 3: Thermodynamic and Kinetic Stability Measurements of Gadolinium Chelates

<table>
<thead>
<tr>
<th>Gadolinium Chelate</th>
<th>Type of Structure</th>
<th>Thermodynamic Stability</th>
<th>Kinetic Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>log K_{therm}</td>
<td>log K_{cond}</td>
</tr>
<tr>
<td>DOTAREM® (gadoterate meglumine)</td>
<td>Macrocyclic ionic</td>
<td>25.6</td>
<td>19.3</td>
</tr>
<tr>
<td>GADAVIST® (gadobutrol)</td>
<td>Macrocyclic non-ionic</td>
<td>21.8</td>
<td>14.7</td>
</tr>
<tr>
<td>PROHANCE® (gadoteridol)</td>
<td>Macrocyclic non-ionic</td>
<td>23.8</td>
<td>17.1</td>
</tr>
<tr>
<td>MULTIHANCE® (gadobenate dimeglumine)</td>
<td>Linear ionic</td>
<td>22.6</td>
<td>18.4</td>
</tr>
<tr>
<td>MAGNEVIST® (gadopentetate dimeglumine)</td>
<td>Linear ionic</td>
<td>22.1</td>
<td>17.7</td>
</tr>
<tr>
<td>OMNISCAN™ (gadodiamide)</td>
<td>Linear ionic</td>
<td>16.9</td>
<td>14.9</td>
</tr>
<tr>
<td>OPTIMARK™ (gadoversetamide)</td>
<td>Linear ionic</td>
<td>16.6</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Abbreviations: K_{cond} = conditional stability constant at physiological pH; K_{therm} = thermodynamic stability constant; $T_{1/2}$ = half life.

INDICATIONS AND CLINICAL USE

DOTAREM is a gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associated tissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity.

Pediatric (2 – 17 years of age) Use
The safety and efficacy of DOTAREM at a single dose of 0.1 mmol/kg have been established in pediatric patients from 2 to 17 years of age. No dosage adjustment according to age is necessary in this population (see Dosage and Administration, Use in Specific Populations and Clinical Studies).

The safety and efficacy of DOTAREM have not been established in pediatric patients below 2 years of age. GFR does not reach adult levels until 1 year of age (see Use in Specific Populations).

Geriatric Use
In clinical studies of DOTAREM, 900 patients were 65 years of age and over, and 312 patients were 75 years of age and over. No overall differences in safety or efficacy were observed between these subjects and younger subjects. In general, use of DOTAREM in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. No age-related dosage adjustment is necessary (see Use in Specific Populations).
Patients with Renal Impairment
No DOTAREM dosage adjustment is recommended for patients with renal impairment. Gadoterate meglumine can be removed from the body by hemodialysis (see Use in Specific Populations and Clinical Pharmacology).

CONTRAINdications ²

History of clinically important hypersensitivity reactions to DOTAREM (see Warnings and Precautions—Hypersensitivity Reactions).

WARNINGS AND PRECAUTIONS ²

WARNING: NEPHROGENIC SYSTEMIC FIBROSI(S NSF)

Gadolinium-based contrast agents (GBCAs) increase the risk for NSF among patients with impaired elimination of the drugs. Avoid use of GBCAs in these patients unless the diagnostic information is essential and not available with non-contrasted MRI or other modalities. NSF may result in fatal or debilitating fibrosis affecting the skin, muscle and internal organs.

- The risk for NSF appears highest among patients with:
 - Chronic, severe kidney disease (GFR < 30 mL/min/1.73m²), or
 - Acute kidney injury.
- Screen patients for acute kidney injury and other conditions that may reduce renal function. For patients at risk for chronically reduced renal function (e.g. age > 60 years, hypertension, diabetes), estimate the glomerular filtration rate (GFR) through laboratory testing (5.1).
- For patients at highest risk for NSF, do not exceed the recommended DOTAREM dose and allow a sufficient period of time for elimination of the drug from the body prior to any re-administration (see Warnings and Precautions).

Nephrogenic Systemic Fibrosis
Gadolinium-based contrast agents (GBCAs) increase the risk for nephrogenic systemic fibrosis (NSF) among patients with impaired elimination of the drugs. Avoid use of GBCAs among these patients unless the diagnostic information is essential and not available with non-contrast MRI or other modalities. The GBCA-associated NSF risk appears highest for patients with chronic, severe kidney disease (GFR < 30 mL/min/1.73m²) as well as patients with acute kidney injury. The risk appears lower for patients with chronic, moderate kidney disease (GFR 30 - 59 mL/min/1.73m²) and little, if any, for patients with chronic, mild kidney disease (GFR 60 - 89 mL/min/1.73m²). NSF may result in fatal or debilitating fibrosis affecting the skin, muscle and internal organs. Report any diagnosis of NSF following DOTAREM administration to Guerbet LLC (1-877-729-6679) or FDA (1-800-FDA-1088 or www.fda.gov/medwatch).

Screen patients for acute kidney injury and other conditions that may reduce renal function. Features of acute kidney injury consist of rapid (over hours to days) and usually reversible decrease in kidney function, commonly in the setting of surgery, severe infection, injury or drug-induced kidney toxicity. Serum creatinine levels and estimated GFR may not reliably assess renal function in the setting of acute kidney injury. For patients at risk for chronically reduced renal function (e.g., age > 60 years, diabetes mellitus or chronic hypertension), estimate the GFR through laboratory testing.
Among the factors that may increase the risk for NSF are repeated or higher than recommended doses of a GBCA and the degree of renal impairment at the time of exposure. Record the specific GBCA and the dose administered to a patient. For patients at highest risk for NSF, do not exceed the recommended DOTAREM dose and allow a sufficient period of time for elimination of the drug prior to re-administration. For patients receiving hemodialysis, physicians may consider the prompt initiation of hemodialysis following the administration of a GBCA in order to enhance the contrast agent’s elimination. The usefulness of hemodialysis in the prevention of NSF is unknown (see Dosage and Administration and Clinical Pharmacology).

Hypersensitivity Reactions
Anaphylactic and anaphylactoid reactions have been reported with DOTAREM, involving cardiovascular, respiratory, and/or cutaneous manifestations. Some patients experienced circulatory collapse and died. In most cases, initial symptoms occurred within minutes of DOTAREM administration and resolved with prompt emergency treatment (see Adverse Reactions).
• Before DOTAREM administration, assess all patients for any history of a reaction to contrast media, bronchial asthma and/or allergic disorders. These patients may have an increased risk for a hypersensitivity reaction to DOTAREM.
• Administer DOTAREM only in situations where trained personnel and therapies are promptly available for the treatment of hypersensitivity reactions, including personnel trained in resuscitation.
• During and following DOTAREM administration, observe patients for signs and symptoms of hypersensitivity reactions.

Acute Kidney Injury
In patients with chronically reduced renal function, acute kidney injury requiring dialysis has occurred with the use of GBCAs. The risk of acute kidney injury may increase with increasing dose of the contrast agent; administer the lowest dose necessary for adequate imaging. Screen all patients for renal impairment by obtaining a history and/or laboratory tests. Consider follow-up renal function assessments for patients with a history of renal dysfunction.

Extravasation and Injection Site Reactions
Ensure catheter and venous patency before the injection of DOTAREM. Extravasation into tissues during DOTAREM administration may result in tissue irritation (see Nonclinical Toxicology).

ADVERSE REACTIONS

GBCAs have been associated with a risk for NSF (see Warnings and Precautions). NSF has not been reported in patients with a clear history of exposure to DOTAREM alone.

Hypersensitivity reactions and acute kidney injury are described in other sections of the labeling (see Warnings and Precautions).

Clinical Studies Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.
The data described below reflect DOTAREM exposure in 2813 patients, representing 2672 adults and 141 pediatric patients. Overall, 55% of the patients were men. In clinical trials where ethnicity was recorded the ethnic distribution was 74% Caucasian, 12% Asian, 4% Black, and 10% others. The average age was 53 years (range from 0.1 to 97 years).

Overall, 3.9% of patients reported at least one adverse reaction, primarily occurring immediately or several days following DOTAREM administration. Most adverse reactions were mild or moderate in severity and transient in nature.

Table 4 lists adverse reactions that occurred in ≥ 0.2% patients who received DOTAREM.

Table 4: Adverse Reactions in Clinical Trials

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>0.6%</td>
</tr>
<tr>
<td>Headache</td>
<td>0.5%</td>
</tr>
<tr>
<td>Injection Site Pain</td>
<td>0.4%</td>
</tr>
<tr>
<td>Injection Site Coldness</td>
<td>0.2%</td>
</tr>
<tr>
<td>Burning Sensation</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Adverse reactions that occurred with a frequency < 0.2% in patients who received DOTAREM include: feeling cold, rash, somnolence, fatigue, dizziness, vomiting, pruritus, paresthesia, dysgeusia, pain in extremity, anxiety, hypertension, palpitations, oropharyngeal discomfort, serum creatinine increased and injection site reactions, including site inflammation, extravasation, pruritus, and warmth.

Adverse Reactions in Pediatric Patients

During clinical trials, 141 pediatric patients (7 aged < 24 months, 33 aged 2 - 5 years, 58 aged 6 - 11 years and 43 aged 12 - 17) received DOTAREM. Overall, 6 pediatric patients (4.3%) reported at least one adverse reaction following DOTAREM administration. The most frequently reported adverse reaction was headache (1.5%). Most adverse events were mild in severity and transient in nature, and all patients recovered without treatment.

Postmarketing Experience

The following additional adverse reactions have been identified during postmarketing use of DOTAREM. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Table 5: Adverse Reactions in the Postmarketing Experience

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Adverse Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Disorders</td>
<td>bradycardia, tachycardia, arrhythmia</td>
</tr>
<tr>
<td>Immune System Disorders</td>
<td>hypersensitivity / anaphylactoid reactions including cardiac arrest, respiratory arrest, cyanosis, pharyngeal edema, laryngospasm, bronchospasm, angioedema, conjunctivitis, ocular hyperemia, eyelid edema, lacrimation increased, hyperhidrosis, urticaria</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>coma, convulsion, syncope, presyncope, parosmia, tremor</td>
</tr>
</tbody>
</table>
System Organ Class Adverse Reaction

Musculoskeletal and Connective Tissue Disorders	muscle contracture, muscle weakness
Gastrointestinal Disorders	diarrhea, salivary hypersecretion
General Disorders and Administration Site Conditions	malaise, fever
Skin and Subcutaneous Tissue Disorders	NSF, in patients whose reports were confounded by the receipt of other GBCAs or in situations where receipt of other GBCAs could not be ruled out. No unconfounded cases of NSF have been reported with DOTAREM.
Vascular Disorders	superficial phlebitis

DRUG INTERACTIONS

DOTAREM does not interfere with serum and plasma calcium measurements determined by colorimetric assays. Specific drug interaction studies with DOTAREM have not been conducted.

USE IN SPECIFIC POPULATIONS

Pregnancy

Pregnancy Category C

Risk Summary

There are no adequate and well-controlled studies with DOTAREM conducted in pregnant women. Limited published human data on exposure to other GBCAs during pregnancy did not show adverse effects in exposed neonates. No effects on embryo fetal development were observed in rats or rabbits at doses up to 10 mmol/kg/day in rats or 3 mmol/kg/day in rabbits. The doses in rats and rabbits were respectively 16 and 10 times the recommended human dose based on body surface area. DOTAREM should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Human Data

While it is unknown if DOTAREM crosses the human placenta, other GBCAs do cross the placenta in humans and result in fetal exposure.

Animal Data

Reproductive and developmental toxicity studies were conducted with gadoterate meglumine in rats and rabbits. Gadoterate meglumine was administered intravenously in doses of 0, 2, 4 and 10 mmol/kg/day (or 3.2, 6.5 and 16.2 times the recommended human dose based on body surface area) to female rats for 14 days before mating throughout the mating period and until gestation day (GD) 17. Pregnant rabbits were intravenously administered gadoterate meglumine at the dose levels of 0, 1, 3 and 7 mmol/kg/day (or 3.3, 10 and 23 times the human doses based on body surface area) from GD6 to GD19. No effects on embryo fetal development were observed in rats or rabbits at doses up to 10 mmol/kg/day in rats or 3 mmol/kg/day in rabbits. Maternal toxicity was observed in rats at 10 mmol/kg/day (or 16 times the human dose based on body surface area) and in rabbits at 7 mmol/kg/day (23 times the human dose based on body surface area).
Nursing Mothers

It is not known whether DOTAREM is excreted in human milk. Limited case reports on use of GBCAs in nursing mothers indicate that 0.01 to 0.04% of the maternal gadolinium dose is excreted in human breast milk. Because many drugs are excreted in human milk, exercise caution when DOTAREM is administered to a nursing woman. Nonclinical data show that gadoterate meglumine is excreted into breast milk in very small amounts (< 0.1% of the dose intravenously administered) and absorption via the gastrointestinal tract is poor.

Pediatric Use

The safety and efficacy of DOTAREM at a single dose of 0.1 mmol/kg have been established in pediatric patients from 2 to 17 years of age. No dosage adjustment according to age is necessary in this population (see Dosage and Administration and Clinical Studies). The safety and efficacy of DOTAREM have not been established in pediatric patients below 2 years of age. GFR does not reach adult levels until 1 year of age (see Warnings and Precautions).

Geriatric Use

In clinical studies of DOTAREM, 900 patients were 65 years of age and over, and 312 patients were 75 years of age and over. No overall differences in safety or efficacy were observed between these subjects and younger subjects. In general, use of DOTAREM in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. No age-related dosage adjustment is necessary.

Renal Impairment

No DOTAREM dosage adjustment is recommended for patients with renal impairment. Gadoterate meglumine can be removed from the body by hemodialysis (see Warnings and Precautions and Clinical Pharmacology).

DOSAGE AND ADMINISTRATION

Dosing Guidelines

For adult and pediatric patients (2 years and older), the recommended dose of DOTAREM is 0.2 mL/kg (0.1 mmol/kg) body weight administered as an intravenous bolus injection, manually or by power injector, at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. Table 6 provides weight-adjusted dose volumes.

Table 6: Volumes of DOTAREM Injection by Body Weight

<table>
<thead>
<tr>
<th>Body Weight</th>
<th>Volume Milliliters (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds (lb)</td>
<td>Kilograms (kg)</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>66</td>
<td>30</td>
</tr>
<tr>
<td>88</td>
<td>40</td>
</tr>
<tr>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>132</td>
<td>60</td>
</tr>
<tr>
<td>154</td>
<td>70</td>
</tr>
<tr>
<td>176</td>
<td>80</td>
</tr>
<tr>
<td>198</td>
<td>90</td>
</tr>
<tr>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>242</td>
<td>110</td>
</tr>
<tr>
<td>264</td>
<td>120</td>
</tr>
<tr>
<td>286</td>
<td>130</td>
</tr>
</tbody>
</table>
To ensure complete injection of DOTAREM the injection may be followed by normal saline flush. Contrast MRI can begin immediately following DOTAREM injection.

Drug Handling

Visually inspect DOTAREM for particulate matter prior to administration. Do not use the solution if particulate matter is present or if the container appears damaged. DOTAREM should be a clear, colorless to yellow solution. Do not mix with other drugs or parenteral nutrition. Discard any unused portions of the drug.

When DOTAREM is to be injected using plastic disposable syringes, the contrast medium should be drawn into the syringe and used immediately.

Pre-filled syringes must not be frozen. Frozen syringes should be discarded. Should solidification occur in the vial because of exposure to the cold, DOTAREM should be brought to room temperature before use. If allowed to stand at room temperature for a minimum of 90 minutes, DOTAREM should return to a clear, colorless to yellow solution. Before use, examine the product to assure that all solids are redissolved and that the container and closure have not been damaged. Should solids persist, discard the vial.

Directions for Use of the DOTAREM (gadoterate meglumine) Injection glass pre-filled syringe:

1) Screw the threaded tip of the plunger rod clockwise into the cartridge plunger and push forward a few millimeters to break any friction between the cartridge plunger and syringe barrel.

2) Holding the syringe vertically so the rubber cap is pointed upward, aseptically remove the rubber cap from the tip of the syringe and attach either a sterile, disposable needle or compatible needleless luer lock tubing set using a push-twist action. At this point, the tubing set is not attached to a patient’s intravenous connection.
 - If using a needleless luer lock tubing set, check the connection between the syringe and the tubing as the fluid flows. Ensure that the connection is successful before administration of DOTAREM Injection.
 - If using a needle, hold the syringe vertically and push plunger forward until all of the air is evacuated and fluid either appears at the tip of the needle or the tubing is filled. Following the usual venous blood aspiration procedure, complete the DOTAREM injection.

3) To ensure complete delivery of the contrast medium, the injection may be followed by a normal saline flush.

4) Properly dispose of the syringe and any other materials used.

<table>
<thead>
<tr>
<th>Body Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds (lb)</td>
<td>Kilograms (kg)</td>
</tr>
<tr>
<td>308</td>
<td>140</td>
</tr>
<tr>
<td>330</td>
<td>150</td>
</tr>
</tbody>
</table>
OVERDOSAGE

DOTAREM administered to healthy volunteers and to patients at cumulative doses up to 0.3 mmol/kg was tolerated in a manner similar to lower doses. Adverse reactions to overdosage with DOTAREM have not been reported. Gadoterate meglumine can be removed from the body by hemodialysis (see Clinical Pharmacology).

CLINICAL PHARMACOLOGY

Summary
After IV injection, DOTAREM is rapidly distributed in blood and extracellular fluid. It is not known to be metabolized and is rapidly excreted in urine in subjects with normal renal function.

- Urinary elimination is delayed with renal impairment.
- No dose adjustment is required for any patient population.
- DOTAREM does not induce any modification of ECGs and does not induce QT/QTc interval prolongation (see DETAILED PHARMACOLOGY).

Mechanism of Action
Gadoterate is a paramagnetic molecule that develops a magnetic moment when placed in a magnetic field. The magnetic moment enhances the relaxation rates of water protons in its vicinity, leading to an increase in signal intensity (brightness) of tissues.

In magnetic resonance imaging (MRI), visualization of normal and pathological tissue depends in part on variations in the radiofrequency signal intensity that occurs with:

1) differences in proton density
2) differences of the spin-lattice or longitudinal relaxation times (T1)
3) differences in the spin-spin or transverse relaxation time (T2).

When placed in a magnetic field, gadoterate shortens the T1 and T2 relaxation times in target tissues. At recommended doses, the effect is observed with greatest sensitivity in the T1-weighted sequences.

Pharmacodynamics
Gadoterate affects proton relaxation times and consequently the MR signal, and the contrast obtained is characterized by the relaxivity of the gadoterate molecule. The relaxivity values for gadoterate are similar across the spectrum of magnetic field strengths used in clinical MRI (0.2-1.5 T).

Gadoterate does not cross the intact blood-brain barrier and, therefore, does not enhance normal brain or lesions that have a normal blood-brain barrier, e.g. cysts, mature post-operative scars. However, disruption of the blood-brain barrier or abnormal vascularity allows distribution of gadoterate in lesions such as neoplasms, abscesses, and infarcts.

Pharmacokinetics
The pharmacokinetics of total gadolinium following an intravenously administered 0.1 mmol/kg dose of DOTAREM in normal subjects conform to a one-compartment open-model with a mean elimination half-life (reported as mean ± SD) of about 1.4 ± 0.2 hr and 2.0 ± 0.7 hr in female and male subjects, respectively. Similar pharmacokinetic profile and elimination half-life values were observed after intravenous injection of 0.1 mmol/kg of DOTAREM followed 20 minutes later by
a second injection of 0.2 mmol/kg (1.7 ± 0.3 hr and 1.9 ± 0.2 hr in female and male subjects, respectively).

Distribution
The volume of distribution at steady state of total gadolinium in normal subjects is 179 ± 26 and 211 ± 35 mL/kg in female and male subjects respectively, roughly equivalent to that of extracellular water.

Gadoterate does not undergo protein binding in vitro. The extent of blood cell partitioning of gadoterate is not known.

Metabolism
Gadoterate is not known to be metabolized.

Elimination
Following a 0.1 mmol/kg dose of DOTAREM, total gadolinium is excreted primarily in the urine with 72.9 ± 17.0% and 85.4 ± 9.7% (mean ± SD) eliminated within 48 hours, in female and male subjects, respectively. Similar values were achieved after a cumulative dose of 0.3 mmol/kg (0.1 ± 0.2 mmol/kg, 20 minutes later), with 85.5 ± 13.2% and 92.0 ± 12.0% recovered in urine within 48 hrs in female and male subjects respectively.

In healthy subjects, the renal and total clearance rates of total gadolinium are comparable (1.27 ± 0.32 and 1.74 ± 0.12 mL/min/kg in females; and 1.40 ± 0.31 and 1.64 ± 0.35 mL/min/kg in males, respectively) indicating that the drug is primarily cleared through the kidneys. Within the studied dose range (0.1 to 0.3 mmol/kg), the kinetics of total gadolinium appear to be linear.

Special Populations

Renal Impairment
A single intravenous dose of 0.1 mmol/kg of DOTAREM was administered to 8 patients (5 men and 3 women) with impaired renal function (mean serum creatinine of 498 ± 98 µmol/L in the 10 - 30 mL/min creatinine clearance group and 192 ± 62 µmol/L in the 30-60 mL/min creatinine clearance group). Renal impairment delayed the elimination of total gadolinium. Total clearance decreased as a function of the degree of renal impairment. The distribution volume was unaffected by the severity of renal impairment (Table 7). No changes in renal function test parameters were observed after DOTAREM injection. The mean cumulative urinary excretion of total gadolinium was approximately 76.9 ± 4.5% in 48 hrs in patients with moderate renal impairment, 68.4 ± 3.5% in 72 hrs in patients with severe renal impairment and 93.3 ± 4.7% in 24 hrs for subjects with normal renal function.

Table 7: Pharmacokinetic Profile of Total Gadolinium in Normal and Renally Impaired Patients

<table>
<thead>
<tr>
<th>Population</th>
<th>Elimination Half-life (hr)</th>
<th>Plasma Clearance (L/h/kg)</th>
<th>Distribution Volume (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy volunteers</td>
<td>1.6 ± 0.2</td>
<td>0.10 ± 0.01</td>
<td>0.246 ± 0.03</td>
</tr>
<tr>
<td>Patients with moderate renal impairment</td>
<td>5.1 ± 1.0</td>
<td>0.036 ± 0.007</td>
<td>0.236 ± 0.01</td>
</tr>
<tr>
<td>Patients with severe renal impairment</td>
<td>13.9 ± 1.2</td>
<td>0.012 ± 0.001</td>
<td>0.234 ± 0.01</td>
</tr>
</tbody>
</table>
STORAGE AND STABILITY

Store at 25°C (77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) [see USP, Controlled Room Temperature (CRT)].

Pre-filled syringes must not be frozen. Frozen syringes should be discarded.

Should solidification occur in the vial because of exposure to the cold, DOTAREM should be brought to room temperature before use. If allowed to stand at room temperature for a minimum of 90 minutes, DOTAREM should return to a clear, colorless to yellow solution. Before use, examine the product to assure that all solids are redissolved and that the container and closure have not been damaged. Should solids persist, discard the vial.

DOSAGE FORMS, COMPOSITION AND PACKAGING

DOTAREM Injection is a clear, colorless to yellow solution containing 0.5 mmol/mL of gadoterate meglumine. It is supplied in vials and pre-filled syringes.

DOTAREM Vials
Each single dose vial is closed with a rubber stopper and sealed with an aluminum cap and the contents are sterile. Vials are individually packaged in a shrink wrapped package of 10, in the following configurations:

<table>
<thead>
<tr>
<th>DOTAREM Vials</th>
<th>NDC Code</th>
<th>Number of individually wrapped vials per shrink wrap package</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mL in glass vial</td>
<td>(NDC 67684-2000-1)</td>
<td>10</td>
</tr>
<tr>
<td>15 mL in glass vial</td>
<td>(NDC 67684-2000-2)</td>
<td>10</td>
</tr>
<tr>
<td>20 mL in glass vial</td>
<td>(NDC 67684-2000-3)</td>
<td>10</td>
</tr>
</tbody>
</table>

DOTAREM Pre-filled Syringes
Each syringe is sealed with rubber closures and the contents are sterile. Syringes, including plunger rod, are packaged in a shrink wrapped package of 5, in the following configurations:

<table>
<thead>
<tr>
<th>DOTAREM Pre-filled Syringes</th>
<th>NDC Code</th>
<th>Number of individually wrapped syringes per shrink wrap package</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mL in glass pre-filled syringe</td>
<td>(NDC 67684-2000-5)</td>
<td>5</td>
</tr>
<tr>
<td>15 mL in glass pre-filled syringe</td>
<td>(NDC 67684-2000-6)</td>
<td>5</td>
</tr>
<tr>
<td>20 mL in glass pre-filled syringe</td>
<td>(NDC 67684-2000-7)</td>
<td>5</td>
</tr>
</tbody>
</table>
DOTAREM (gadoterate meglumine) is a paramagnetic macrocyclic ionic contrast agent administered for magnetic resonance imaging.

Molecular Formula and Molecular Mass: \(C_{23}H_{42}O_{13}N_5Gd\) (anhydrous basis), 753.9 g/mol.

Structural Formula:

DOTAREM Injection is a sterile, nonpyrogenic, clear, colorless to yellow, aqueous solution of 0.5 mmol/mL of gadoterate meglumine. No preservative is added. Each mL of DOTAREM contains 376.9 mg of gadoterate meglumine, 0.25 mg of DOTA and water for injection. DOTAREM has a pH of 6.5 to 8.0.

The main physiochemical properties of DOTAREM are provided below:

Table 8: Physicochemical Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density @ 20°C</td>
<td>1.1753 g/cm³</td>
</tr>
<tr>
<td>Viscosity @ 20°C</td>
<td>3.4 mPa·s</td>
</tr>
<tr>
<td>Viscosity @ 37°C</td>
<td>2.4 mPa·s</td>
</tr>
<tr>
<td>Osmolality</td>
<td>1350 mOsm/kg water</td>
</tr>
</tbody>
</table>

Thermodynamic Stability
The thermodynamic stability constants for gadoterate (\(\log K_{\text{therm}}\) and \(\log K_{\text{cond}}\) at pH 7.4) are 25.6 and 19.3, respectively.

Kinetic Stability
The dissociation rates of gadolinium chelates are slow at pH 7.4, but these molecules dissociate much more rapidly in acidic solutions. Consequently, the kinetic stability of the Gd\(^{3+}\) chelates is classically studied by measuring the dissociation half-life (\(T_{1/2}\)) of the Gd complex in acidic media.
CLINICAL STUDIES

Pivotal Phase III Clinical Studies
Efficacy and safety of DOTAREM were evaluated in a multi-center clinical trial (Study A, DGD-44-50) that enrolled 364 adult and 38 pediatric patients (aged ≥ 2 years) with known or suspected CNS lesions. Adults were randomized 2 to 1 to receive either DOTAREM or gadopentetate dimeglumine (Magnevist®), each administered at a dose of 0.1 mmol/kg. All pediatric patients received DOTAREM, also at a dose of 0.1 mmol/kg. In the trial, patients first underwent a baseline (pre-contrast) MRI examination followed by the assigned GBCA administration and a post-contrast MR examination. The images (pre-contrast, post-contrast and “paired pre- and post-contrast”) were interpreted by three independent off-site readers blinded to clinical information. The primary efficacy analysis compared three patient-level visualization scores (paired images) to baseline MRI (pre-contrast images) for adults who received DOTAREM. The three primary visualization components were: contrast enhancement, border delineation and internal morphology. For each of these components there was a pre-defined scoring scale. Lesion counting (up to five per patient) was also reflected within each component’s patient-level visualization score.

Figure 1: Pivotal Phase III Study Design

Among the adult patients, 245 received DOTAREM and their data comprised the primary efficacy population. There were 114 (47%) men and 131 (53%) women with a mean age of 53 years (range 18 to 85 years), the racial and ethnic representations were 84% Caucasian, 11% Asian, 4% Black, and 1% other.

Table 9 displays a comparison of paired images (pre- and post-contrast) to pre-contrast images with respect to the proportion of patients who had paired image scores that were greater “better”, or same/worse “not better” than the pre-contrast scores and with respect to the difference in the
mean patient level visualization score\(^2\). Across the three readers 56% to 94% of patients had improved lesion visualization for paired images compared to pre-contrast images. DOTAREM provided a statistically significant improvement for all three primary visualization components. More lesions were seen on the paired images than the pre-contrast images.

Table 9: Study A. Improvement in Patient-level Lesion Visualization Scores, Paired versus Pre-contrast Images\(^{(a)}\)^2

<table>
<thead>
<tr>
<th>Lesion Scores</th>
<th>Reader 1</th>
<th>Reader 2</th>
<th>Reader 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 231</td>
<td>n = 232</td>
<td>n = 237</td>
</tr>
<tr>
<td>Border Delineation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better</td>
<td>195 (84%)</td>
<td>215 (93%)</td>
<td>132 (56%)</td>
</tr>
<tr>
<td>Not Better</td>
<td>28 (12%)</td>
<td>7 (3%)</td>
<td>88 (37%)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (4%)</td>
<td>10 (4%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Difference in Mean Score(^{(b)})</td>
<td>2.26</td>
<td>2.89</td>
<td>1.17</td>
</tr>
<tr>
<td>Internal Morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better</td>
<td>218 (94%)</td>
<td>214 (93%)</td>
<td>187 (79%)</td>
</tr>
<tr>
<td>Not Better</td>
<td>5 (2%)</td>
<td>8 (3%)</td>
<td>33 (14%)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (4%)</td>
<td>10 (4%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Difference in Mean Score(^{(b)})</td>
<td>2.74*</td>
<td>2.75*</td>
<td>1.54*</td>
</tr>
<tr>
<td>Contrast Enhancement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better</td>
<td>208 (90%)</td>
<td>216 (93%)</td>
<td>208 (88%)</td>
</tr>
<tr>
<td>Not Better</td>
<td>15 (6%)</td>
<td>6 (3%)</td>
<td>12 (5%)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (4%)</td>
<td>10 (4%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Difference in Mean Score(^{(b)})</td>
<td>3.09*</td>
<td>3.69*</td>
<td>2.92*</td>
</tr>
</tbody>
</table>

\(a\) Better: number of patients with paired (pre- and post-contrast) score greater than the pre-contrast score
Not better: number of patients with paired score same as or worse than the pre-contrast score
Missing: number of patients with missing score
\(b\) Difference = paired mean score minus pre-contrast mean score
*Statistically significant improvement by paired t-test.

DOTAREM imaging results in the pediatric patients were also similar to those seen in adults\(^2\).

In secondary analyses, post-contrast images were improved in comparison to pre-contrast images. DOTAREM lesion visualization scores were similar to those for gadopentetate dimeglumine (Magnevist)\(^2\).

Lesion Visualization: DOTAREM Versus Magnevist\(^1\)

In addition, there were a number of further analyses. A secondary feature in study DGD-44-050 focused on the use of Magnevist as a measure of validation for the study. This involved the assessment of the same “Paired” (unenhanced plus enhanced) versus the “Pre” (unenhanced) images for the 3 co-primary variables. The mean differences in border delineation scores between “Pre” and “Paired” modalities with Magnevist) were similar to those obtained with DOTAREM. In addition, for each reader, the values obtained were of the same order of magnitude for each modality (“Paired” and “Pre”). Significant within-group differences of the same degree (p<0.001) between the “Paired” and “Pre” modalities were observed for all 3 criteria. Thus, this comparison between DOTAREM and Magnevist showed no significant differences between the 2 contrast agents for all 3 co-primary variables for the 3 off-site readers. The validity of DOTAREM outcomes was therefore confirmed by the absence of any statistically significant difference between DOTAREM and Magnevist results for all parameters evaluated.
In a second clinical trial (Study B, DGD-44-051), MR images were re-read from 150 adult patients with known CNS lesions who had participated in previously conducted clinical trial. DOTAREM administration and image interpretation was performed in the same manner as in Study A. Similar to Study DGD-44-050, this trial also demonstrated improved lesion visualization with DOTAREM.

Additional Studies

Supportive Randomized Studies Involving Central Nervous System Lesions

Two randomized, double-blind studies are briefly outlined in Table 11. DOTAREM produced improved lesion visualization comparable to Magnevist in both studies.

Table 11: Supportive Randomized Studies Involving Central Nervous System Lesions

<table>
<thead>
<tr>
<th>Study Identifier Phase</th>
<th>Study Design</th>
<th>Number of Patients, Contrast Agent and Dosage</th>
<th>Positive Diagnostic Contribution To Lesion Visualization Good/Excellent</th>
<th>Modification of Diagnostic Impression</th>
<th>Modification of Therapeutic Management*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGD-3-17A Phase II/III</td>
<td>Single center, double-blind, parallel-group study. Pre- vs. post-contrast media.</td>
<td>10 patients Dotarem 0.1mmol/kg vs. 10 patients Magnevist 0.1mmol/kg</td>
<td>9/10</td>
<td>82%</td>
<td>4/9 (44%)</td>
</tr>
<tr>
<td>DGD-3-31A Phase III/IV</td>
<td>Multicenter double-blind, parallel-group study. Pre- vs. post-contrast media.</td>
<td>149 patients Dotarem 0.1mmol/kg vs. 150 patients Magnevist 0.1mmol/kg</td>
<td>35%/59%</td>
<td>13%</td>
<td>7%</td>
</tr>
</tbody>
</table>

* numerator represents only those cases where the enhanced MRI was material to the modification of therapy while the denominator represents only those cases where there was a modification of therapy.

Abbreviations: kg = kilogram; mmol = millimole.

RESCUE STUDY (Conducted in patients with chronic kidney disease undergoing MRI)

Deray et al. (2012) prospectively compared the renal safety of meglumine gadoterate (Gd-DOTA)-enhanced magnetic resonance imaging (MRI) to a control group (unenhanced MRI) in high risk patients.

- 114 Evaluable patients, ≥ 18 years of age, with known stable Stage 3 or 4 CKD.
- Primary endpoint: The percentage of patients with an elevation of serum creatinine levels, measured 72±24 h after the MRI procedure by at least 25% or 44.2 µmol/L (0.5 mg/dL) from baseline.
- Main Secondary endpoints: The variation in serum creatinine and eGFR values between baseline and 72±24 h after MRI and the percentage of patients with a decrease in eGFR of at least 25% from baseline.
- Patients screened for signs of nephrogenic systemic fibrosis (NSF) at 3-month follow-up.

Among the evaluable patients, one (1.4%) in the Gd-DOTA group and none in the control group met the criteria of the primary endpoint \(\Delta = -1.4\%, 95\%\ CI = (-7.9\%; 6.7\%)\). Non-inferiority
was demonstrated ($P=0.001$). No clinically significant differences were observed between groups for secondary endpoints. No serious safety events (including NSF) were noted.

The investigators concluded that meglumine gadoterate did not affect renal function and was a safe contrast agent in patients with CKD.

FINEST study (FIbrose Néphrogénique SysTémique)

Janus et al. (2009) conducted a retrospective study designed to determine the prevalence of NSF in French patients with renal impairment (RI) after magnetic resonance imaging (MRI) with or without gadolinium chelate administration. The study was conducted in 9 institutions in France between July 1, 2005 and July 1, 2006.

- 308 eligible patients, with a mean age of 59.9 years, 54% with Stage 5 RI.
- 75% received a gadolinium chelate.
- Of those, 76% received gadoterate, 20% received gadopentetate, 3% gadodiamide, 1% received gadobenate.

No cases of NSF were observed with gadoterate or any of the other three agents.

Post-marketing surveillance studies

Herborn et al. (2007) assessed the diagnostic value and safety of DOTAREM in post-marketing surveillance between January 2004 and October 2005. A total of 24,308 patients at 61 institutions were injected with DOTAREM for various diagnostic examinations. These include a significant number of patients (4907, 20.2%) classified as having relevant medical history.

The diagnosis was established in >99% of cases. Adverse events were noted in 0.4% of the examinations and were mostly rated as minor. Nausea, which occurred in 0.17% of patients, was the most frequent adverse event reported. There was one serious adverse event (anaphylactic shock) with complete recovery.

The investigators concluded that the study suggests diagnostic efficacy and a favorable clinical safety profile of DOTAREM in clinical practice.

Maurer et al. (2012) reviewed the tolerability and diagnostic effectiveness of gadoteric acid under daily practice conditions in the general populations and at-risk patients between January 2004 and January 2010.

- A total of 84,621 patients underwent MRI examinations in 129 German centers.
- The patients had a mean age of 52.0 years (range 5-97).
- A total of 19,354 (22.9%) patients were at-risk patients who had at least one risk factor (e.g. allergies, previous allergic reaction a contrast medium, hypertension, and renal impairment).
- 554 patients received pretreatment before contrast medium administration (0.7%).
- A diagnosis was made in 99.7% of all cases.
- Adverse events were observed in 0.34% of cases and were mostly rated as minor. The most frequent adverse events reported were nausea (0.2%) and vomiting (0.1%).
- Eight patients had serious adverse events; all recovered.
- The adverse event rate was significantly higher in patients with a history of allergies (0.62%, $p<0.001$) and in patients with a previous allergic reaction to contrast medium (1.23%; $p<0.0001$).
- There was no elevated incidence of adverse events in patients with renal impairment.
The investigators concluded that gadoteric acid is a well-tolerated MRI contrast medium in patients with or without risk factors that has a low rate of adverse events.

DETAILED PHARMACOLOGY

Pharmacodynamics
Cardiovascular safety was evaluated by a nonclinical *ex vitro* (dog Purkinje fibers) and *in vivo* studies in both normal (dogs) and sensitized animal models (rabbits) and in patients with various diseases in a specific clinical study.

In all of these studies, DOTAREM did not show any direct deleterious effect on cardiac electrophysiology and especially on ventricular repolarization.

Thorough QT Study
A double-blind, placebo-controlled, cross-over randomized study was conducted in 40 patients aged 18 to 85 years suffering from a disease for which a contrast-enhanced T1 MRI examination could be required. The primary objective was to evaluate the electrocardiographic safety of DOTAREM (particularly in terms of QT interval changes) in patients after IV bolus.

All patients received both placebo and DOTAREM during two 24-hr periods, separated by a wash-out of at least 2 days. DOTAREM was administered as an IV bolus of 0.1 mmol/kg, followed by a second injection of 0.2 mmol/kg 20 minutes after the first dose.

DOTAREM had no effect on the QT or QTc interval or other ECG parameters after bolus IV administration of a cumulative dose of 0.3 mmol/kg.

Pharmacokinetics

Age, Gender and Race
The effects of age on the pharmacokinetics of DOTAREM were not specifically studied.

There were no relevant differences in pharmacokinetics regarding gender.

The influence of race on pharmacokinetics was not studied.

NONCLINICAL TOXICOLOGY

Carcinogenesis, Mutagenesis, Impairment of Fertility
Long-term animal studies have not been performed to evaluate the carcinogenic potential of gadoterate meglumine.

No impairment of male or female fertility and reproductive performance was observed in rats after intravenous administration of gadoterate meglumine at the maximum tested dose of 10 mmol/kg/day (16 times the maximum human dose based on surface area), given during more than 9 weeks in males and more than 4 weeks in females. Sperm counts and sperm motility were not adversely affected by treatment with the drug.
Animal Toxicology and/or Pharmacology
Local intolerance reactions, including moderate irritation associated with infiltration of inflammatory cells were observed after perivenous injection in rabbits suggesting the possibility of local irritation if the contrast medium leaks around the veins in a clinical setting (see Warnings and Precautions)².

There was no effect on ECG, specifically QT interval, and no effect on cardiac action potential in dog Purkinje fibers. A subsequent clinical thorough QT study did not show clinically relevant effects at 0.1 mmol/kg and at a cumulative dose of 0.3 mmol/kg (0.1 + 0.2 mmol/kg)¹.
REFERENCES

1) Data on file. Guerbet LLC.
3) Package Insert(s): Gadavist®, ProHance®, MultiHance®, Magnevist®, OMNISCAN™, and OptiMARK™.
PART III: PATIENT INFORMATION

PATIENT COUNSELING INFORMATION

Nephrogenic Systemic Fibrosis
Instruct patients to inform their healthcare provider if they:
1. have a history of kidney disease, or
2. have recently received a GBCA.

GBCAs increase the risk for NSF among patients with impaired elimination of the drugs. To counsel patients at risk for NSF:
- Describe the clinical manifestations of NSF.
- Describe procedures to screen for the detection of renal impairment.

Instruct the patients to contact their physician if they develop signs or symptoms of NSF following DOTAREM administration, such as burning, itching, swelling, scaling, hardening and tightening of the skin; red or dark patches on the skin; stiffness in joints with trouble moving, bending or straightening the arms, hands, legs or feet; pain in the hip bones or ribs; or muscle weakness.

Common Adverse Reactions
Inform patients that they may experience:
- Reactions along the venous injection site, such as mild and transient burning or pain or feeling of warmth or coldness at the injection site.
- Side effects of headache, nausea, abnormal taste and feeling hot.

General Precautions
Instruct patients receiving DOTAREM to inform their physician if they:
- Are pregnant or breastfeeding.
- Have a history of allergic reaction to contrast media, bronchial asthma or allergy.
- Are taking any medications.
HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use DOTAREM safely and effectively. See full prescribing information for DOTAREM.

DOTAREM® (gadoterate meglumine) Injection for intravenous use
Initial U.S. Approval: 2013

WARNING: NEPHROGENIC SYSTEMIC FIBROSIS (NSF)
See full prescribing information for complete boxed warning
Gadolinium-based contrast agents (GBCAs) increase the risk for NSF among patients with impaired elimination of the drugs. Avoid use of GBCAs in these patients unless the diagnostic information is essential and not available with non-contrast MRI or other modalities.
• The risk for NSF appears highest among patients with:
 - Chronic, severe kidney disease (GFR < 30 mL/min/1.73m²), or
 - Acute kidney injury.
• Screen patients for acute kidney injury and other conditions that may reduce renal function. For patients at risk for chronically reduced renal function (for example, age > 60 years, hypertension or diabetes), estimate the glomerular filtration rate (GFR) through laboratory testing (5.1).

INDICATIONS AND USAGE
DOTAREM is a gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associated tissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity. (1)

DOSE AND ADMINISTRATION
Adult and pediatric patients: The recommended dose of DOTAREM is 0.2 mL/kg (0.1 mmol/kg) body weight administered as an intravenous bolus injection at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. The dose is delivered by manual or power injection. (2)

DOSE FORMS AND STRENGTHS
DOTAREM Injection 0.5 mmol/mL contains 376.9 mg/mL of gadoterate meglumine and is available in vials and pre-filled syringes. (3)

CONTRAINDICATIONS
Clinically important hypersensitivity reactions to DOTAREM. (4)

WARNINGS AND PRECAUTIONS
• Nephrogenic Systemic Fibrosis has occurred in patients with impaired elimination of GBCAs. Higher than recommended dosing or repeat dosing appear to increase the risk. (5.1)
• Hypersensitivity: Anaphylactoid/anaphylactic reactions with cardiovascular, respiratory or cutaneous manifestations, ranging from mild to severe, including death, have uncommonly occurred. Monitor patients closely for need of emergency cardiorespiratory support. (5.2)

ADVERSE REACTIONS
The most frequent (≥ 0.2%) adverse reactions in clinical studies were nausea, headache, injection site pain, injection site coldness, and burning sensation. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact GUERBET LLC at 1-877-729-6679 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch
See 17 for PATIENT COUNSELING INFORMATION.
Revised: 04/2013

FULL PRESCRIBING INFORMATION: CONTENTS*
WARNING: NEPHROGENIC SYSTEMIC FIBROSIS
1 INDICATIONS AND USAGE
2 DOSE AND ADMINISTRATION
2.1 Dosing Guidelines
2.2 Drug Handling
3 DOSE FORMS AND STRENGTHS
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
5.1 Nephrogenic Systemic Fibrosis
5.2 Hypersensitivity Reactions
5.3 Acute Kidney Injury
5.4 Extravasation and Injection Site Reactions
6 ADVERSE REACTIONS
6.1 Clinical Studies Experience
6.2 Postmarketing Experience
7 DRUG INTERACTIONS
8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
8.2 Lactation
8.3 Nursing Mothers
8.4 Pediatric Use
8.5 Geriatric Use
8.6 Renal Impairment
9 DRUG ABUSE AND DEPENDENCE
10 OVERDOSE
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
13.2 Animal Toxicology and/or Pharmacology
14 CLINICAL STUDIES
15 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed.
376.9 mg/mL gadoterate meglumine and is available in vials and pre-filled syringes.

For adult and pediatric patients (2 years and older), the recommended dose of DOTAREM is 0.2 mL/kg (0.1 mmol/kg) body weight administered as an intravenous bolus injection, manually or by power injector, at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. Table 1 provides weight-adjusted dose volumes.

Table 1: Volumes of DOTAREM Injection by Body Weight

<table>
<thead>
<tr>
<th>Body Weight</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds (lb)</td>
<td>Kilograms (kg)</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>66</td>
<td>30</td>
</tr>
<tr>
<td>88</td>
<td>40</td>
</tr>
<tr>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>132</td>
<td>60</td>
</tr>
<tr>
<td>154</td>
<td>70</td>
</tr>
<tr>
<td>176</td>
<td>80</td>
</tr>
<tr>
<td>198</td>
<td>90</td>
</tr>
<tr>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>242</td>
<td>110</td>
</tr>
<tr>
<td>264</td>
<td>120</td>
</tr>
<tr>
<td>286</td>
<td>130</td>
</tr>
<tr>
<td>308</td>
<td>140</td>
</tr>
<tr>
<td>330</td>
<td>150</td>
</tr>
</tbody>
</table>

To ensure complete injection of DOTAREM the injection may be followed by normal saline flush. Contrast MRI can begin immediately following DOTAREM injection.

2.2 Drug Handling
Visually inspect DOTAREM for particulate matter prior to administration. Do not use the solution if particulate matter is present or if the container appears damaged. DOTAREM should be a clear, colorless to yellow solution. Do not mix with other drugs or parenteral nutrition. Discard any unused portions of the drug. When DOTAREM is to be injected using plastic disposable syringes, the contrast medium should be drawn into the syringe and used immediately.

3 DOSAGE FORMS AND STRENGTHS
DOTAREM 0.5 mmol/mL is a sterile, clear, colorless to yellow, aqueous solution for intravenous injection containing 37.9 mg/mL gadoterate meglumine and is available in vials and pre-filed syringes.

4 CONTRAINDICATIONS
History of clinically important hypersensitivity reactions to DOTAREM [see Warnings and Precautions (5.2)].

5 WARNINGS AND PRECAUTIONS
5.1 Nephrogenic Systemic Fibrosis
Gadolinium-based contrast agents (GBCAs) increase the risk for NSF among patients with impaired elimination of the drugs. Avoid use of GBCAs in these patients unless the diagnostic information is essential and not available with non-contrast MRI or other modalities. NSF may result in fatal or debilitating fibrosis affecting the skin, muscle and internal organs.

- The risk for NSF appears highest among patients with:
 - Chronic, severe kidney disease (GFR < 30 mL/min/1.73m²), or
 - Acute kidney injury.

- Screen patients for acute kidney injury and other conditions that may reduce renal function.
 - For patients at risk for chronically reduced renal function (e.g. age > 60 years, hypertension, diabetes), estimate the glomerular filtration rate (GFR) through laboratory testing (5.1).
 - For patients at highest risk for NSF, do not exceed the recommended DOTAREM dose and allow a sufficient period of time for elimination of the drug from the body prior to any re-administration [see Warnings and Precautions (5.1)].

1 INDICATIONS AND USAGE
DOTAREM is a gadolinium-based contrast agent indicated for intravenous use with magnetic resonance imaging (MRI) in brain (intracranial), spine and associated tissues in adult and pediatric patients (2 years of age and older) to detect and visualize areas with disruption of the blood brain barrier (BBB) and/or abnormal vascularity.

2 DOSAGE AND ADMINISTRATION
2.1 Dosing Guidelines
For adult and pediatric patients (2 years and older), the recommended dose of DOTAREM is 0.2 mL/kg (0.1 mmol/kg) body weight administered as an intravenous bolus injection, manually or by power injector, at a flow rate of approximately 2 mL/second for adults and 1-2 mL/second for pediatric patients. Table 1 provides weight-adjusted dose volumes.

- Before DOTAREM administration, assess all patients for any history of a reaction to contrast media, bronchial asthma and/or allergic disorders. These patients may have an increased risk for a hypersensitivity reaction to DOTAREM.
Adverse reactions that occurred with a frequency < 0.2% in patients who received DOTAREM include: feeling cold, rash, somnolence, fatigue, dizziness, vomiting, pruritus, parethesia, dysgeusia, pain in extremity, anxiety, hypertension, palpitations, oropharyngeal discomfort, serum creatinine increased and injection site reactions, including site inflammation, extravasation, pruritus, and warmth.

Adverse Reactions in Pediatric Patients
During clinical trials, 141 pediatric patients (7 aged < 24 months, 33 aged 2 - 5 years, 58 aged 6 - 11 years and 43 aged 12 - 17) received DOTAREM. Overall, 6 pediatric patients (4.3%) reported at least one adverse reaction following DOTAREM administration. The most frequently reported adverse reaction was headache (1.5%). Most adverse events were mild in severity and transient in nature, and all patients recovered without treatment.

6.2 Postmarketing Experience
The following additional adverse reactions have been identified during postmarketing use of DOTAREM. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Table 3: Adverse Reactions in the Postmarketing Experience

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Adverse Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Disorders</td>
<td>Bradycardia, tachycardia, arrhythmia</td>
</tr>
<tr>
<td>Immune System Disorders</td>
<td>Hypersensitivity / anaphylactoid reactions including cardiac; arrest, respiratory arrest, cyanosis, pharyngeal edema, laryngospasm, bronchospasm, angioedema, conjunctivitis, ocular hyperemia, eyelid edema, laceration increased, hypopharyngitis, urticaria</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>Coma, convulsion, syncope, presyncope, paraesthesia, fever</td>
</tr>
<tr>
<td>Musculoskeletal and Connective Tissue Disorders</td>
<td>Muscle contracture, muscle weakness</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td>Diarrhea, salivary hypersecretion</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td>Malaise, fever</td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td>NSF, in patients whose reports were confounded by the receipt of other GBCAs or in situations where receipt of other GBCAs could not be ruled out. No unconfounded cases of NSF have been reported with DOTAREM</td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td>Superficial phlebitis</td>
</tr>
</tbody>
</table>

7 DRUG INTERACTIONS
DOTAREM does not interfere with serum and plasma calcium measurements determined by colorimetric assays. No specific drug interaction studies with DOTAREM have not been conducted.

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Pregnancy Category C

Risk Summary
There are no adequate and well-controlled studies with DOTAREM conducted in pregnant women. Limited published human data on exposure to other GBCAs during pregnancy did not show adverse effects in exposed neonates. There are no adequate and well-controlled studies with DOTAREM in pregnant women. Limited published human data on exposure to other GBCAs during pregnancy did not show adverse effects in exposed neonates. Limited published human data on exposure to other GBCAs during pregnancy did not show adverse effects in exposed neonates.

Table 4: Adverse Reactions in Pregnancy

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortion</td>
<td>0.1%</td>
</tr>
<tr>
<td>Miscarriage</td>
<td>0.1%</td>
</tr>
<tr>
<td>Stillbirth</td>
<td>0.1%</td>
</tr>
<tr>
<td>Gestational loss</td>
<td>0.1%</td>
</tr>
<tr>
<td>Preterm labor</td>
<td>0.1%</td>
</tr>
<tr>
<td>Premature rupture of membranes</td>
<td>0.1%</td>
</tr>
<tr>
<td>Oligohydramnios</td>
<td>0.1%</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Risk of congenital anomalies in animal studies
Reproductive and developmental toxicity studies were conducted with gadoterate meglumine in rats and rabbits. Gadoterate meglumine was administered intravenously in doses of 0, 2, 4 and 10 mmol/kg (up to 3.2, 6.5 and 16.2 times the recommended human dose based on body surface area) to female rats for 14 days before mating throughout the mating period and until gestation day (GD) 17. Pregnant rabbits were intravenously administered
gadoterate meglumine at the dose levels of 0, 1, 3 and 7 mmol/kg/day (or 3.3, 10 and 23 times the human doses based on body surface area) from GD6 to GD19. No effects on embryonic development were observed in rats or rabbits at doses up to 10 mmol/kg/day in rats or 3 mmol/kg/day in rabbits. Maternal toxicity was observed in rats at 10 mmol/kg/day (or 16 times the human dose based on body surface area) and in rabbits at 7 mmol/kg/day (23 times the human dose based on body surface area).

8.3 Nursing Mothers

It is not known whether DOTAREM is excreted in human milk. Limited case reports on use of GBCAs in nursing mothers indicate that 0.01 to 0.04% of the maternal gadolinium dose is excreted in human breast milk. Because many drugs are excreted in human milk, exercise caution when DOTAREM is administered to a nursing woman. Nonclinical data show that gadoterate meglumine is excreted into breast milk in very small amounts (< 0.1% of the dose intravenously administered) and absorption via the gastrointestinal tract is poor.

8.4 Pediatric Use

The safety and efficacy of DOTAREM at a single dose of 0.1 mmol/kg have been established in pediatric patients from 2 to 17 years of age. No dosage adjustment according to age is necessary in this population (See Dosage and Administration (2.1) and Clinical Studies (14)). The safety and efficacy of DOTAREM have not been established in pediatric patients below 2 years of age. GFR does not reach adult levels until 1 year of age (see Warnings and Precautions (5.1)).

8.5 Geriatric Use

In clinical studies of DOTAREM, 900 patients were 65 years of age and over, and 312 patients were 75 years of age and over. No overall differences in safety or efficacy were observed between these subjects and younger subjects. In general, use of DOTAREM in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. No age-related dosage adjustment is necessary.

8.6 Renal Impairment

No DOTAREM dosage adjustment is recommended for patients with renal impairment. Gadoterate meglumine can be removed from the body by hemodialysis (see Warnings and Precautions (5.1)) and Clinical Pharmacology (12.3).

10 OVERDOSAGE

DOTAREM administered to healthy volunteers and to patients at cumulative doses up to 0.3 mmol/kg was tolerated in a manner similar to lower doses. Adverse reactions to overdosage with DOTAREM have not been reported.

Gadoterate meglumine can be removed from the body by hemodialysis (See Clinical Pharmacology (12.3)).

11 DESCRIPTION

DOTAREM (gadoterate meglumine) is a paramagnetic macrocyclic ionic contrast agent administered for magnetic resonance imaging. The chemical name for gadoterate meglumine is D-glucitol, 1-deoxy-1-(methylamino)-, [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceto(4-)-.kappa.N1, .kappa.N4, .kappa.N7, .kappa.N10, .kappa.O1, .kappa.O4, .kappa.O7, .kappa.O10]gadolinate(1-)(1:1); it has a formula weight of 753.9 g/mol and empirical formula C23H42O13N5Gd (anhydrous basis).

The structural formula of gadoterate meglumine in solution is as follows:

CAS Registry No. 92943-83-6

DOTAREM Injection is a sterile, nonpyrogenic, clear, colorless to yellow, aqueous solution of 0.5 mmol/mL of gadoterate meglumine. No preservative is added. Each mL of DOTAREM contains 376.9 mg of gadoterate meglumine, 0.25 mg of DOTA and water for injection. DOTAREM has a pH of 6.5 to 8.0.

The main physiochemical properties of DOTAREM Injection are provided below:

Table 4: Physiochemical Properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density @ 20°C</td>
<td>1.1753 g/cm³</td>
</tr>
<tr>
<td>Viscosity @ 20°C</td>
<td>3.4 mPa·s</td>
</tr>
<tr>
<td>Viscosity @ 37°C</td>
<td>2.4 mPa·s</td>
</tr>
<tr>
<td>Osmolality</td>
<td>1350 mOsm/kg water</td>
</tr>
</tbody>
</table>

The thermodynamic stability constants for gadoterate (log KWm and log KBrE at pH 7.4) are 25.8 and 19.3, respectively.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Gadodiamide is a paramagnetic molecule that develops a magnetic moment when placed in a magnetic field. The magnetic moment enhances the relaxation rates of water protons in its vicinity, leading to an increase in signal intensity (brightness) of tissues.

In magnetic resonance imaging (MRI), visualization of normal and pathological tissue depends in part on variations in the radiofrequency signal intensity that occurs with:

1) differences in proton density
2) differences of the spin-lattice or longitudinal relaxation times (T1)
3) differences in the spin-spin or transverse relaxation time (T2)

When placed in a magnetic field, gadodiamide shortens the T1 and T2 relaxation times in target tissues. At recommended doses, the effect is observed with greatest sensitivity in the T1-weighted sequences.

12.2 Pharmacodynamics

Gadodiamide affects proton relaxation times and consequently the MR signal, and the contrast obtained is characterized by the relaxivity of the gadodiamide molecule. The relaxivity values for gadodiamide are similar across the spectrum of magnetic field strengths used in clinical MRI (0.2-1.5 T).

Gadoterate does not cross the intact blood-brain barrier and, therefore, does not enhance normal brain or lesions that have a normal blood-brain barrier, e.g. cysts, mature post-operative scars. However, disruption of the blood-brain barrier or abnormal vascularity allows distribution of gadoterate in lesions such as neoplasms, abscesses, and infarcts.

12.3 Pharmacokinetics

The pharmacokinetics of total gadolinium following an intravenously administered 0.1 mmol/kg dose of DOTAREM in normal subjects conform to a one-compartment open-model with a mean elimination half-life (reported as mean ± SD) of about 1.4 ± 0.2 hr and 2.0 ± 0.7 hr in female and male subjects, respectively. Similar pharmacokinetic profile and elimination half-life values were observed after intravenous injection of 0.1 mmol/kg of DOTAREM allowed 20 minutes later by a second injection of 0.1 mmol/kg (1.7 ± 0.3 hr and 1.9 ± 0.2 hr in female and male subjects, respectively).

Distribution

The volume of distribution at steady state of total gadolinium in normal subjects is 179 ± 26 and 211 ± 35 mL/kg in female and male subjects respectively, roughly equivalent to that of extracellular water.

Gadoterate does not undergo protein binding in vitro. The extent of blood cell partitioning of gadoterate is not known.

Metabolism

Gadoterate is not known to be metabolized.
Table 6: Study A. Improvement in Patient-level Lesion Visualization Scores, Paired versus the paired images than the pre-contrast images. Provided a statistically significant improvement for all three primary visualization components. More lesions were seen on 56% to 94% of patients had improved lesion visualization for paired images compared to pre-contrast images. DOTAREM pre-defined scoring scale. Lesion counting (up to five per patient) was reflected within each component's patient-level visualization score. Across the three readers, the renal and total clearance rates of total gadolinium are comparable (1.27 ± 0.2 and 1.74 ± 0.2 mL/min per 1.73 m² in females; and 1.40 ± 0.31 and 1.84 ± 0.35 mL/min per 1.73 m² in males, respectively) indicating that the drug is primarily cleared through the kidneys. Within the studied dose range (0.1 to 0.3 mmol/kg), the kinetics of total gadolinium appear to be linear. Special Populations: Renal Impairment: A single intravenous dose of 0.1 mmol/kg of DOTAREM was administered to 8 patients (5 men and 3 women) with impaired renal function (mean serum creatinine of 468 ± 16 µmol/L, in the 10-30 mL/min creatinine clearance group and 192 ± 82 µmol/L, in the 30-60 mL/min creatinine clearance group). Renal impairment delayed the elimination of total gadolinium. Total clearance decreased as a function of the degree of renal impairment. The distribution volume was unaffected by the severity of renal impairment (Table 5). No changes in renal function test parameters were observed after DOTAREM injection. The mean cumulative urinary excretion of total gadolinium was approximately 76.9 ± 4.5% in 48 hrs in patients with moderate renal impairment, 68.4 ± 3.5% in 72 hrs in patients with severe renal impairment and 93.3 ± 4.7% in 24 hrs for subjects with normal renal function. Table 5: Pharmacokinetic Profile of Total Gadolinium in Normal and Renally Impaired Patients

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility: Long-term animal studies have not been performed to evaluate the carcinogenic potential of gadoterate meglumine. Gadoterate meglumine did not demonstrate mutagenic potential in in vitro bacterial reverse mutation assays (Ames test) using Salmonella typhimurium, in an in vitro-cytosomatic aberration assay in Chinese hamster ovary cells, in an in vitro gene mutation assay in Chinese hamster lung cells, nor in an in vivo mouse micronucleus assay. No impairment of male or female fertility and reproductive performance was observed in rats after intravenous administration of gadoterate meglumine at the maximum tested dose of 10 mmol/kg/day (16 times the maximum human drug dose based on surface area), given during more than 9 months in males and more than 4 weeks in females. Sperm counts and sperm motility were not adversely affected by treatment with the drug. 13.2 Animal Toxicology and/or Pharmacology: Local intolerance reactions, including moderate irritation associated with infiltration of inflammatory cells were observed after perivenous injection in rabbits suggesting the possibility of local irritation if the contrast medium leaks around the veins in a clinical setting (see Warnings and Precautions (5.4)).

14 CLINICAL STUDIES

Efficacy and safety of DOTAREM were evaluated in a multi-center clinical trial (Study A) that enrolled 364 adult and 38 pediatric patients (aged ≥ 2 years) with known or suspected CNS lesions. Adults were randomized 2 to 1 to receive either DOTAREM or gadopentetate dimeglumine, each administered at a dose of 0.1 mmol/kg. All pediatric patients received DOTAREM, also at a dose of 0.1 mmol/kg. In the trial, patients first underwent a baseline (pre-contrast) MRI examination using DOTAREM injection. The mean cumulative urinary excretion of total gadolinium was approximately 76.9 ± 4.5% in 48 hrs in patients with moderate renal impairment, 68.4 ± 3.5% in 72 hrs in patients with severe renal impairment and 93.3 ± 4.7% in 24 hrs for subjects with normal renal function. Table 5: Pharmacokinetic Profile of Total Gadolinium in Normal and Renally Impaired Patients

Population	**Elimination Half-life (hr)**	**Plasma Clearance (L/h/kg)**	**Distribution Volume (L/kg)**
Healthy volunteers | 1.6 ± 0.2 | 0.12 ± 0.1 | 0.24 ± 0.03
Patients with moderate renal impairment | 5.1 ± 1.0 | 0.036 ± 0.007 | 0.234 ± 0.01
Patients with severe renal impairment | 13.9 ± 1.2 | 0.012 ± 0.001 | 0.234 ± 0.01

Table 6: Study A. Improvement in Patient-level Lesion Visualization Scores, Paired versus Pre-contrast Images

<table>
<thead>
<tr>
<th>Lesion Scores</th>
<th>Reader 1</th>
<th>Reader 2</th>
<th>Reader 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Border Delineation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better</td>
<td>195 (84%)</td>
<td>215 (93%)</td>
<td>132 (56%)</td>
</tr>
<tr>
<td>Not Better</td>
<td>28 (12%)</td>
<td>7 (3%)</td>
<td>88 (37)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (4%)</td>
<td>10 (4%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Difference in Mean Score</td>
<td>2.28*</td>
<td>2.89*</td>
<td>1.37*</td>
</tr>
<tr>
<td>Internal Morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better</td>
<td>218 (94%)</td>
<td>214 (93%)</td>
<td>187 (79%)</td>
</tr>
<tr>
<td>Not Better</td>
<td>5 (2%)</td>
<td>8 (3%)</td>
<td>33 (14%)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (4%)</td>
<td>10 (4%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Difference in Mean Score</td>
<td>2.74*</td>
<td>2.75*</td>
<td>1.54*</td>
</tr>
<tr>
<td>Contrast Enhancement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better</td>
<td>208 (90%)</td>
<td>216 (93%)</td>
<td>208 (88%)</td>
</tr>
<tr>
<td>Not Better</td>
<td>15 (6%)</td>
<td>6 (3%)</td>
<td>12 (5%)</td>
</tr>
<tr>
<td>Missing</td>
<td>8 (4%)</td>
<td>10 (4%)</td>
<td>17 (7%)</td>
</tr>
<tr>
<td>Difference in Mean Score</td>
<td>3.09*</td>
<td>3.69*</td>
<td>2.92*</td>
</tr>
</tbody>
</table>

*Better: number of patients with paired (pre- and post-contrast) score greater than the pre-contrast score
Not better: number of patients with paired score same as or worse than the pre-contrast score
Missing: number of patients with missing score
*Difference = paired mean score minus pre-contrast mean score
*Statistically significant improvement by paired t-test
In secondary analyses, post-contrast images were improved in comparison to pre-contrast images. DOTAREM lesion visualization scores were similar to those for gadopentetate dimeglumine. DOTAREM imaging results in the pediatric patients were also similar to those seen in adults.

In a second clinical trial (Study B), MR images were reread from 150 adult patients with known CNS lesions who had participated in previously conducted clinical trial. DOTAREM administration and image interpretation was performed in the same manner as in Study A. Similar to Study A, this trial also demonstrated improved lesion visualization with DOTAREM.

16 HOW SUPPLIED/STORAGE AND HANDLING

DOTAREM Injection is a clear, colorless to yellow solution containing 0.5 mmol/mL of gadoterate meglumine. It is supplied in vials and prefilled syringes.

- **DOTAREM Injection** is supplied in 10 mL vials containing 10 mL of solution, in 20 mL vials containing 15 mL or 20 mL of solution. Each single dose vial is sealed with a rubber stopper and sealed with an aluminum cap, and the contents are sterile.

DOTAREM is supplied in 10 mL prefilled syringes containing 10 mL of solution, and 20 mL prefilled syringes containing 15 mL or 20 mL of solution.

Storage
Store at 25°C (77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) [see USP, Controlled Room Temperature (CRT)].

Pre-filled syringes must not be frozen. Frozen syringes should be discarded.

17 PATIENT COUNSELING INFORMATION

17.1 Nephrogenic Systemic Fibrosis

Instruct patients to inform their healthcare provider if they:

1. have a history of kidney disease, or
2. have recently received a GBCA.

GBCAs increase the risk for NSF among patients with impaired elimination of the drugs. To counsel patients at risk for NSF:

- Instruct patients to inform their healthcare provider if they:
 1. have a history of kidney disease, or
 2. have recently received a GBCA.
 3. have a history of allergic reaction to contrast media, bronchial asthma or allergy.

17.2 Common Adverse Reactions

Inform patients that they may experience:

- Reactions along the venous injection site, such as mild and transient burning or pain or feeling of warmth or coldness at the injection site.
- Side effects of headache, nausea, abnormal taste and feeling hot.

17.3 General Precautions

Instruct patients receiving DOTAREM to inform their physician if they:

- Are pregnant or breastfeeding.
- Have a history of allergic reaction to contrast media, bronchial asthma or allergy.
- Are taking any medications.

Pre-filled syringes manufactured by Catalent, Belgium for Guerbet

Vials manufactured by Recipharm, France for Guerbet

Revised [04/2013]