CT Radiation Dose Reduction
Byron Chen, MD

Problem Statement
Radiation doses on lumbar spine CT’s performed at Memorial campus (particularly in larger patients) are too high resulting in excess cancer risk to patients.

Background
- 2012 – over 68 million CT’s performed
- Cancer risk estimate – 1-2% of all cancers
- Radiation dose measured in “seiverts”
- Typical dose for lumbar spine CT – 10 mSv
- At UMass, average dose over 5 months – 15.5 mSv
- 17 cases with doses exceeding 25 mSv
- All occurred in larger patients

- Different body parts require different amounts of radiation to penetrate tissue.
- Larger patients need higher doses
- Automatic Exposure Control (AEC)

Current Condition
- Patient brought to scanner
- Scout View
- Projected dose
- Adjustments to scan parameters
- Maximum mA
- 7 mSv – 46 mSv

Root Cause Analysis
- Radiation doses too high
 Why?
- Automatic exposure control modulating too high in larger patients
 Why?
- No upper limit being set by technologist
 Why?
- No protocol in place/education

Goals
- Lower average radiation dose to 11mSv
- Decrease number of cases >25mSv to zero
- Maintain diagnostic image quality

Countermeasures
1. Set upper limit of allowable dose prior to scanning
 - American College of Radiology standards
 - Standard work
2. Technologist Education
3. Radiologist survey

Results
- Average Dose:
 - Dose (mSv) vs Implementation
 - Maintenance of diagnostic image quality
 - 4 musculoskeletal radiologists polled
 - 4 out of 4 indicated no noticeable change in image quality after countermeasures implemented.

Conclusions
- Average dose reduced by 19% (15.5 mSv → 12.5 mSv)
- Number of cases >25 mSv reduced to zero
- Maintained diagnostic image quality throughout
- Key is root cause analysis
- Next steps:
 - Apply “template” to wider scope
 - Reduce doses even further

Acknowledgements: The author would like to thank Steven Baccei MD, Andrew Karellas PhD, Gail Bernard, RT (C), and Larry Zheng MD.