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Over the last decade, gene expression microarrays have had a profound impact on biomedical research. The diversity

of platforms and analytical methods available to researchers have made the comparison of data from multiple platforms

challenging. In this study, we describe a framework for comparisons across platforms and laboratories. We have attempted to

include nearly all the available commercial and ‘in-house’ platforms. Using probe sequences matched at the exon level improved

consistency of measurements across the different microarray platforms compared to annotation-based matches. Generally,

consistency was good for highly expressed genes, and variable for genes with lower expression values as confirmed by

quantitative real-time (QRT)-PCR. Concordance of measurements was higher between laboratories on the same platform than

across platforms. We demonstrate that, after stringent preprocessing, commercial arrays were more consistent than in-house

arrays, and by most measures, one-dye platforms were more consistent than two-dye platforms.

Gene expression microarray technology has greatly matured over the
past decade, and it is expected that the technology will extend its
current role as an experimental tool for basic science research and
become increasingly applied in clinical practice. Several large efforts to
create standardized protocols for microarray experiments (from probe
annotation to data analysis) have been initiated: the Minimum Infor-
mation About a Microarray Experiment (MIAME) standards (http://
www.mged.org/Workgroups/MIAME/miame.html), The External RNA
Controls Consortium (ERCC) (http://www.cstl.nist.gov/biotech/Cell&
TissueMeasurements/GeneExpression/ERCC.htm) and The Micro-
Array Quality Control (MAQC) project (http://www.fda.gov/nctr/
science/centers/toxicoinformatics/maqc/). All these initiatives aim at
improving the quality of microarray data through standardization.

Major portals for deposition and retrieval of microarray data, such
as the Gene Expression Omnibus (GEO)1 and ArrayExpress2, will be
truly useful only if experiments are sufficiently reliable and annotated

so that meaningful results can be extracted across platforms. The
diversity of platforms and microarray data raise the questions of
whether and how data from different platforms can be compared and
combined. The results from previous cross-platform comparisons
have been mixed and continue to be debated3–30. Although a body
of information continues to develop, at least one of the following
factors may have biased the results of previous comparative studies:
(i) nonidentical samples on different platforms; (ii) samples not
sufficiently distinct; (iii) samples processed using different protocols;
(iv) lack of technical replicates; (v) data preprocessing steps not
standardized; (vi) only a few types of platforms directly compared;
(vii) measurements matched using probe annotations; (viii) ‘agree-
ment’ not unambiguously quantified or (ix) insufficient biological
validation. Although some of the above conditions may be reflective of
the actual limitations of these platforms, in practice they complicate
assessing the magnitude of disagreement attributable to the platforms.
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Because of the diversity of technical and analytical sources that can
affect the results of an experiment and hence a comparison among
experiments, standardization within a single platform may be insuffi-
cient. Nonetheless, several recent comparison studies involving
microarrays have justified guarded optimism for the reproducibility
of measurements across platforms but have also indicated the need for
further large-scale comparison studies4,7,10,31.

We present a comprehensive framework for cross-platform compar-
ison of DNA microarrays based on data from ten different mouse
microarray platforms. The study includes single- and dual-dye plat-
forms, cDNA and oligonucleotide microarrays, and both commercial
and in-house fabricated microarrays (see Supplementary Data
online). Hybridizations were conducted in five replicates to enhance
statistical reliability32, and for three platforms, experiments were
replicated at two different facilities. Each laboratory (see Supplemen-
tary Data online) received aliquots from two different RNA samples,
mouse retina and mouse cortex prepared in the Cepko Laboratory at
Harvard Medical School (http://genetics.med.harvard.edu/~cepko/).
Pooling tissue from many animals before extracting the RNA mini-
mized the biological variations within tissue RNA preparations. Large
pools of each sample were collected to allow future inclusion of
emerging technologies into the study.

Following methods from recent studies13,33,34, we used probe
sequence information to map probes at the level of both genes and
exons to improve the stringency with which measurements are
compared across platforms. To the best of our knowledge, this is the
first study of this scale using probe sequences in this way. For the data
analyses, we combined well-described, commonly used and publicly
available analytical approaches in a framework that can be used every
time the reliability of a new platform needs to be assessed.

RESULTS

Experimental study design

We evaluated intra-platform, inter-platform and inter-laboratory
comparisons on ten different microarray platforms. The platforms
included the following; Affymetrix, Agilent, Applied Biosystems (ABI),
Amersham (now GE Healthcare), cDNA arrays provided by the Cepko
laboratory (academic cDNA), Compugen (now Sigma-Genosys),

Mergen, long oligonucleotide arrays from the Microarray Core facility
at Massachusetts General Hospital (MGH long oligo), MWG BioTech
(now Ocimum Biosolutions) and Operon platforms. Five replicate
assays for each sample were processed for each platform. Biological
validations were conducted by QRT-PCR. For further details about the
experimental design and protocols, and data analyses, see Supple-
mentary Data online and Methods, respectively.

Intra-platform comparisons

The consistency of measurements from technical replicates was
generally good, both for intensities (absolute) and log2 ratios
(relative). For intensities, the average Pearson correlation over all
pairs of technical replicates was as high as 0.96 (after filtering; see
Supplementary Table 1a online). Per platform, ABI had the highest
correlation (40.995) and academic cDNA had the lowest (0.88). As
expected, the one-dye platforms had the highest correlations of
intensities. When relative measurements were evaluated, the two-dye
platforms, except for academic cDNA, had correlations similar to the
single-dye platforms (Table 1). Spot quality filtering increased the
intra-platform correlations for all platforms, except for the academic
cDNA platform. Based on the s.d. of differences between paired data
points, internal consistency was comparable across most of the
platforms (Table 1).

Very similar patterns of performance were found when calculating
coefficients of variation (CVs) per gene (see Supplementary Table 1b
online). Based on CVs, platforms from ABI, Affymetrix,
Amersham and Agilent performed best, whereas academic cDNA
performed poorest.

The dynamic range of relative measurements provides information
about how well a particular platform can reliably identify fold changes.
Overall, the dynamic ranges were comparable for most of the plat-
forms, except for those of Agilent and MWG, which had less than half
the dynamic range of the others.

Inter-platform comparisons

To compare platforms, probe measurements were mapped to the
following gene identifiers: UniGene (UG), LocusLink (LL), RefSeq
(RS) and RefSeq exon (RSEXON). Mapping and matching

Table 1 Intra-platform performance

Unfiltered Filtered

Correlation coefficient Accuracy Correlation coefficient Accuracy

Pearson Spearman S.d. Score No. of genes Pearson Spearman S.d. Score No. of genes

Affymetrix 0.78 0.71 0.73 0.39 149 0.95 0.91 0.23 0.47 117

Amersham 0.89 0.84 0.52 0.41 149 0.95 0.93 0.25 0.44 135

Mergen 0.68 0.71 1.27 0.54 136 0.91 0.86 0.37 0.37 111

ABI 0.81 0.70 0.74 0.60 137 0.97 0.95 0.26 0.66 130

cDNA 0.71 0.72 1.08 0.17 37 0.66 0.65 1.03 0.18 36

MGH 0.85 0.84 0.74 0.55 99 0.93 0.91 0.45 0.61 92

MWG 0.87 0.80 0.25 0.17 87 0.92 0.84 0.20 0.17 87

Agilent 0.95 0.88 0.19 0.27 148 0.95 0.88 0.18 0.27 148

Compugen 0.83 0.87 0.91 0.28 43 0.97 0.96 0.24 0.35 34

Operon 0.87 0.89 0.68 0.40 136 0.97 0.96 0.25 0.47 118

Each platform was evaluated on internal performance through a number of statistics. Results are shown both for filtered and unfiltered data to illustrate the positive effects of
filtering. Pearson and Spearman correlation coefficients calculated from normalized log2 ratios suggest good overall agreement between technical replicates. The Pearson and
Spearman columns show the corresponding average correlation coefficients. S.d. over paired data from technical replicates are given for each platform to indicate the magnitudes
of deviation between replicated log2 ratio measurements. Based on the biological validations, using the QRT-PCR log2 ratios as nominal values, we calculated an accuracy score for
each platform as the slope of the regression line for measurements of common genes. The ‘no. of genes’ columns show the number of measurement pairs included in the regression
for each platform. For the single-dye platforms, five technical replicates of log2 ratios were created by randomly pairing (without replacement) technical replicates of the single-
sample experiments.
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procedures are described in Methods. Amersham, Mergen and
Compugen had the highest percentages (472%) of probes that
could be mapped completely within a single RSEXON. For the
other platforms, o63% of the probes could be exon mapped. As
expected, the longer cDNA probes had the lowest percentage of
exon-mapped probes (8.7%).

Across platforms, the number of common genes decreased from
UG, through LL and RS to RSEXON (see Supplementary Table 2a
online). Only four RSEXONs were common across all ten platforms:
NM_008086:1 (Gas1), NM_008686:1 (Nfe211), NM_018798:1
(Ubqln2) and NM_018871:1 (Ywhag). In general, when probe
sequences were mapped within the same exon for a given gene, the
expression measurements (both log2 ratios and intensities) were found

to be very similar across the platforms, even though the probe
sequences did not overlap (Fig. 1). Overall, data mapped through
probe sequences (RS and RSEXON) showed higher inter-platform
correlations than data mapped to UG and LL.

The Pearson correlation, as calculated from log2 ratios paired from
two platforms, was reasonably good for all platforms (0.63–0.92),
except for academic cDNA and partly for Compugen, whose correla-
tions with other platforms were mixed. Spot quality filtering had a
profound positive effect for all the inter-platform correlations, except
for academic cDNA arrays (Supplementary Table 2b online). This
table also shows that the correlations improved with increasing match
stringency. For example, the Pearson correlations for the pair-wise
comparison of Affymetrix and Amersham were 0.76, 0.76, 0.81 and

Affymetrix 59957817 59958071
85

E = 0.818

75
L = 255 

59958326 L = 30Amersham

Mergen

ABI

Academic cDNA

MGH long oligo
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Operon

NM_008086:1

59958297
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79

E = –0.530

76

Figure 1 Cross-platform agreement of probes

matched within one exon. For Gas1 (RefSeq

NM_008086, LocusLink 14451, UniGene

Mm.22701), all ten platforms had probes

that could be mapped completely within the

boundaries of the first exon. The diagram shows

the location of the probes from the different

platforms. The complete exon is indicated at the
bottom, with the 3¢ end on the left hand side. The

start and end positions on chromosome 13 are

given just above the left-hand end and the right-

hand end, respectively, of the bar representing the

exon. The probes are indicated with black bars,

flanked by the start and end coordinates, as given

by the sequence alignments of the probes to the

genome. The length of the alignment between the

probe and the exon (L) is shown to the right of

the probe bars. The relative gene expression (E)

shown below each probe bar is the log2 ratio of

mouse retina versus mouse cortex. The percentile

transformed intensities from each platform are

shown above the respective probe bars. For each

platform, the number in red on the left-hand side

is the intensity from mouse retina and the number

in green on the right-hand side is the intensity

from mouse cortex.

Table 2 Assessment of measurement deviation from pseudo-nominal values

Outliers Deviations

Unfiltered (1,690 genes) Filtered (881 genes) Distance from median Distance from QRT-PCR

Counts % Counts % No. of genes Mean S.d. Mean S.d.

Affymetrix 284 19.6 127 18.7 149 0.27 0.32 1.65 1.28

Amersham 298 20.5 150 19.5 149 0.33 0.47 1.55 1.20

Mergen 331 21.3 164 21.7 136 0.42 0.68 1.61 1.30

ABI 413 27.9 219 28.8 137 0.39 0.63 1.53 1.16

cDNA 164 63.5 135 68.9 37 0.92 0.84 1.73 1.33

MGH 228 45.4 129 50.2 99 0.64 0.78 1.68 1.52

MWG 353 32.5 209 38.5 87 0.82 1.07 1.93 1.94

Agilent 304 27.0 223 31.1 148 0.50 0.77 1.66 1.11

Compugen 263 48.2 84 38.5 43 0.73 0.78 1.92 1.35

Operon 636 38.7 279 33.6 136 0.41 0.61 1.58 1.42

For each gene (RS) that had been represented on at least five platforms, an outlier log2 ratio was defined as a measurement that was outside the range defined by mean ± 1 s.d.,
as calculated from all log2 ratios for that gene. For each platform, we counted the number of times any of its measurements had been identified as an outlier log2 ratio. To indicate
how often a given platform would be far away from the consensus measurement (as given by the cross-platform mean), the ‘%’ columns show the outlier counts relative to the total
number of genes on that platform included in the set of genes represented on at least five platforms. For a set of 153 genes (RS) validated by QRT-PCR, we used the median log2

ratios and the QRT-PCR log2 ratios as nominal measurements to assess magnitudes of deviations. The ‘no. of genes’ column shows, for each platform, the number of genes from this
set represented on the given platform. For each choice of nominal value, the mean and s.d. are computed over all gene deviations for each platform.
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0.85 for UG, LL, RS and RSEXON, respectively. It can also be seen
that, for all matching criteria, the correlations were higher for
comparisons within single-dye platforms than within two-dye
platforms, although Agilent, MGH long oligo and Operon platforms
were comparable to single-dye platforms. Moreover, for all platforms,
permutation tests indicated that the correlations were highly signifi-
cant for the RSEXON matched measurements (data not shown). Also
s.d. of relative measurements improved with match stringency (see
Supplementary Table 2c online).

We created CAT (Correspondence At the Top) plots based on all
mapping options to assess and illustrate cross-platform agreement (see
Supplementary Fig. 1 online). One-dye platforms usually agreed with
each other, whereas the two-dye platforms were more variable. In
terms of outliers, the one-dye platforms usually performed better than
the two-dye platforms in that they had fewer outliers when consider-
ing matched measurements (Table 2).

Principal component analysis (PCA) was used to illustrate the
overall similarity of expression profiles. Figure 2 shows the PCA
plot based on the three first principal components calculated from 130
genes common to eight of the platforms. One-dye platforms were
clustered together whereas two-dye platforms were more spread apart.

Inter-laboratory comparison

Data from three platforms, Affymetrix, Amersham and Mergen, were
analyzed for cross-laboratory consistency. The intra-platform Pearson
and Spearman correlations for intensities between laboratories were
high for both samples (r 4 0.95). For log2 ratios, Amersham had the
highest cross-laboratory correlation (0.93), followed by Affymetrix
(0.89) and Mergen (0.79). In contrast, the highest cross-platform
Pearson correlation involving Amersham was 0.81 (Affymetrix
versus Amersham, for RSEXON matched data), indicating that

cross-laboratory variations are considerably smaller than cross-
platform variations (see Supplementary Table 2d online). PCA
focused on these three platforms showed that results from experiments
on identical platforms conducted at different sites clustered much
closer than measurements obtained from experiments on different
platforms (see Supplementary Fig. 2 online).

Quantitative biological validations

As an independent validation strategy, two methods using QRT-PCR
were used to obtain RNA levels for a total of 160 unique genes. Log2

ratios for 91 genes were obtained using TaqMan (see Supplementary
Table 3b online) and for 74 genes using Universal ProbeLibrary (see
Supplementary Table 3c online). As a replacement for a true gold-
standard, we considered log2 ratios from QRT-PCR as nominal values
and used the slope of the regression line of the log2 ratios from each
microarray platform against QRT-PCR results as an accuracy measure
to evaluate the platforms. By this statistic, ABI would be ranked the
highest, followed by Affymetrix and Operon, whereas academic
cDNA, MWG and Agilent were the lowest (see Table 1 for accuracies
using the TaqMan subset). These findings were confirmed by correla-
tion coefficients on QRT-PCR data paired with data from the
microarray platforms (data not shown). We observed slightly lower
correlations for ProbeLibrary results than for TaqMan results when
investigating the two subsets of QRT-PCR separately.

Overall, the measurements from most microarray platforms
agreed well with QRT-PCR. However, the dynamic range for
QRT-PCR was noticeably larger than that for the microarrays
(Fig. 3). The median of all the microarray measurements had a
Pearson correlation with QRT-PCR of 0.76, indicating reasonably
good agreement. In terms of log2 ratio difference, one-dye platforms
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Figure 2 Cross-platform PCA plot. The plot illustrates PCA performed on

log2 ratios corresponding to 130 RS identifiers common to eight of the ten

platforms. As academic cDNA and Compugen had few RS identifiers in

common with the other platforms, we chose to exclude these from this

analysis to increase the number of genes applicable to PCA without missing

values. For Affymetrix (affy2), Amersham (amer2) and Mergen (merg2)

expression profiles obtained from a second laboratory were included in the

analysis. The other expression profiles are labeled with abbreviations of the
platform names used elsewhere. Each expression profile is plotted according

to the first, second and third principal components. For each axis, the

number in parenthesis gives the amount of variation (in percent of total)

accounted for by the corresponding principal component.

Figure 3 Scatter plot of QRT-PCR versus all microarrays. Log2 ratios from

the microarray platforms are plotted (y axis) versus the corresponding log2

ratios from QRT-PCR (x axis). From each platform, all log2 ratios based on

probes that could be mapped to any of the 153 RS identifiers used in QRT-

PCR were used. The regression line between the median microarray log2

ratios (over all platforms including a given gene) and the QRT-PCR log2

ratios is shown in blue. The slope of the line is 0.437, indicating a smaller

dynamic range for the microarrays as compared to QRT-PCR. The Pearson

correlation coefficient between the median measurements and QRT-PCR

was 0.76 (P value 1.36 E-30), indicating relatively good, and highly

significant correlation.
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had shorter distances compared to those of two-dye platforms. Within
the two-dye platforms, Agilent and Operon had the shortest average
distances (Table 2).

Most of the platforms had results consistent with QRT-PCR
for genes of high and medium expression. For highly expressed
genes, single-dye platforms had markedly better agreement with
QRT-PCR than two-dye platforms did. In the case of genes with
low expression, the agreement with QRT-PCR was much poorer for
all platforms. For a subset of seven retina-related genes (confirmed
to be highly expressed in retina from multiple studies using classical
techniques), high expression in mouse retina versus mouse cortex
was found in almost all platforms with probes for these genes and
also confirmed by QRT-PCR (see Table 3 and Supplementary
Table 3d online).

DISCUSSION

In this study we compared gene expression data from ten different
microarray platforms using identical samples. From the outset, we
aimed to develop a sound and consistent framework for cross-
platform comparisons. Our goals were to (i) provide unbiased results
with clear metrics for performance evaluations using well-established
analytical techniques, (ii) conduct the experiments for different plat-
forms as systematically and as similarly as possible and (iii) allow
inclusion of novel academic and commercial platforms as they
develop. This is an ongoing comparative effort and we plan to include
future platforms as they become available.

For platform comparisons, one would like to have two unlimited
sources of RNA to ensure that identical samples are used on different
platforms. For the general usefulness of the comparison, the RNA
samples should be selected from a commonly used organism and
should have a diverse set of transcripts covering a wide expression
range. When this study was started, such sources were not available. We
therefore chose two samples that had some of the above features. We
extracted and pooled RNA from tissues of cortex and retina from the
well-studied Mus musculus, selecting inbred mice to eliminate genetic
variability. Cortex was chosen because brain tissues are generally
considered to have broad expression profiles, whereas retina has
some well-known tissue-specific transcripts35,36. Both tissue samples
can be considered as replenishable sources of RNA with little variability
between different pools, as demonstrated by laser-based capillary

electrophoresis of labeled samples (data not shown). Mouse universal
reference RNA sources have recently become commercially available,
such as those from Ambion (http://www.ambion.com/catalog/
CatNum.php?6050) and Stratagene (http://www.stratagene.com/
manuals/740000.pdf) and will be considered for future studies.

We aimed to include all platforms claiming to perform whole-
genome scale profiling of mouse mRNA that could provide probe
sequence information. This set of hybridization-based platforms is
considered homogenous relative to other gene expression technolo-
gies, for example, SAGE37 and MPSS38. Each platform, however, may
have a distinct set of laboratory or quality control features affecting the
ease of inclusion for comparison purposes, including external spikes,
alien probes and positive and negative controls. Such features were not
present in all platforms and we chose to use internal controls where
available. This may introduce biases in the comparisons that are not
easily compensated for, but reflects the current usage of these plat-
forms in laboratory environments.

Differences in technical and instrument choices, such as image
analysis algorithms, make direct comparisons based on raw (intensity)
signals impossible. We applied two transformations bringing the signal
ranges to a uniform scale to compensate for differences in signal
intensity ranges between platforms. This was found useful in compar-
ing intra-platform variations. In spot quality filtering procedures, we
chose to prioritize the quality flags generated by image analysis
software according to recommendations from the platform vendors.
Our results demonstrated that stringent spot quality filtering can
improve data consistency, confirming reports of previous studies22,39.

Despite efforts to optimize conditions for all experiments and
analyses, we identified possible confounding factors biasing the results
for three of the platforms: academic cDNA, Compugen and Agilent.
The academic cDNA platform from our lab consistently performed
poorest on all evaluations. We do not believe this reflects the quality of
spotted cDNA arrays in general, as we found technical problems
specific to our cDNA platform: (i) sequence-verification revealed that
15–20% of checked probes had false probe identity (about 50% of the
probes were checked), and (ii) the amount of DNA varied from spot to
spot. For Compugen, which also had low performance scores, one
possible explanation is the relatively small number of probes, poten-
tially causing a bias in the gene selection available for comparisons. For
Agilent, a compression of the dynamic range was observed, possibly

Table 3 Microarray measurements and QRT-PCR validation results for seven retina-related genes

Gene

Rho, Mm.2965 Neurod1, Mm.4636 Fgf3, Mm.4947 Crx, Mm.8008 Nr1, Mm.20422 Opn1sw, Mm.56987 Arr3, Mm.95518

QRT-PCR 12.7 2.6 0 11.3 12.8 6.4 2.8

Affymetrix 8.5 3.7 0.6 5.6 5.2 5.6 NA

Amersham –0.3 3.0 0.5 NA NA NA NA

Mergen 9.2 3.5 0.6 8.8 8.8 8.2 NA

ABI 9.3 3.5 –-0.1 6.6 9.4 NA 7.4

cDNA 5.6 –0.1 0.3 NA 1.3 NA 0.5

MGH NA 3.3 1.2 9.5 NA 8.0 NA

MWG NA 2.5 0 –0.1 1.8 2.7 NA

Agilent 0.3 2.2 0.2 NA NA 3.2 NA

Compugen NA NA 1.3 NA NA NA NA

Operon 3.3 2.7 2.5 3.8 4.0 3.0 NA

Seven genes previously verified to be highly expressed in the mouse retina were chosen for a detailed comparison of microarray versus QRT-PCR measurements. The table shows log2

ratios measured with QRT-PCR (ProbeLibrary) and the microarray platforms. Genes are named by official gene symbol and UniGene cluster number. Genes that were not represented
on a given platform are listed with ‘NA’ in the corresponding cell. FGF3 is highly expressed in embryonic retina and not in adult retina35,36.
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due to suboptimal hybridization conditions (corrections have been
made to Agilent’s current protocols). Scanner saturation was observed
for some experiments in some platforms. It is difficult to assess to what
extent the limitations of scanner intensity ranges influenced the
comparisons reported. However, a dual-scan procedure was tested
for one platform having saturated spots but did not result in better
agreement (data not shown). The above observations emphasize the
need for careful design of cross-platform protocols and performance
tuning throughout the execution of the experimental procedures.

Overall, the results based on different mapping strategies showed
good agreement. The agreement between platforms on matched data
tended to increase with increasing mapping specificity: UG, LL, RS,
RSEXON. A possible interpretation is that the RefSeq mapping
eliminates biases due to splice variants, being on the transcript level,
and that the RSEXON mapping possibly forces the probes of different
platforms to be more similar, as they are confined to a limited region
of each gene. These hypotheses require further investigation. A
systematic analysis of the effect of different probe designs was not
performed, but could give more insights into the relative role of probe
sequence versus other technological properties of the platforms.

In summary, the commercial platforms performed better than in-
house platforms, both on internal consistency and agreement with
other platforms. The performance of the one-dye platforms, Affymetrix,
ABI and Amersham, was consistently among the best. The high internal
consistency of Affymetrix and Amersham was also confirmed in the
experiments conducted at a second laboratory. The observation that
cross-laboratory variability using the same technology was lower than
that of cross-platform variability confirmed results of other studies7,40.

QRT-PCR, although commonly accepted as a gold standard for
relative gene expression measurements41, also has technical limitations
and potential biases. Overall, the microarray results were in agreement
with QRT-PCR for genes with medium and high expression, whereas
there was little agreement for genes with lower or variable expression.
We interpret this as stochastic variation appearing at low transcript
numbers in both microarrays and validation procedures. We also
found evidence for the importance of careful primer design when
using QRT-PCR as the results from TaqMan were more consistent
than those from Universal ProbeLibrary. For the former, primers had
been designed to be on the same exon as the microarray probes. This
was not enforced for the latter, where the primers were designed to be
optimal for their kit using proprietary software. The differences in
measurements of the two QRT-PCR methods, suggest that the use of
QRT-PCR for biological validations must be carried out carefully.

In future studies, we will use other samples specifically selected to
address biological and technical issues. A second pool of mouse retina
RNA was collected to examine biological variability of the same
sample across the arrays. Rat retina and yeast samples have been
created to address issues related to cross-species specificity and cross-
hybridization. The experimental design for two-dye platforms will also
be extended to investigate dye swaps, self-self hybridizations and
single-sample hybridizations. In addition to the platforms evaluated
in this manuscript, data sets have been generated but not analyzed for
these platforms: Agilix42, Illumina43, MPSS38 and SAGE37. We will
include these platforms in future comparisons.

The goal of this study was to illustrate a comparison framework that
matched the transcripts at the sequence level. This is a first report of
this relatively large-scale initiative in which the sequences of all probes
were known. The results presented here indicate that there are many
platforms available that provide good quality data, especially on highly
expressed genes, and that between these platforms, there is generally
good agreement. However, the results from different platforms vary

substantially, both overall and for subsets of genes. Therefore, despite
considerable developments toward standardization of gene expression
profiling, many issues remain open for investigation.

METHODS
Sample collection and isolation. RNA samples used for all platforms were

divided into aliquots from two pools of samples: C57/B6 adult mouse retina

and Swiss-Webster postnatal day one (P1) mouse cortex. Mouse retina and

mouse cortex were chosen because of their availability and biological interest.

Mouse retina samples were obtained from a pool of C57/B6 mice (n¼350) and

mouse cortex were obtained from P1 Swiss-Webster mice (n¼19), which were

both purchased from Charles River Laboratories. The animal experiments were

approved by the Institutional Animal Care Facility at Harvard University. The

mouse cortex was used as a reference sample for the dual-dye platforms. The

remaining total RNA from both samples was stored at –80 1C.

Labeling, hybridization and image processing. Sample preparation and

hybridization steps were conducted following the protocols provided for each

platform. Eight of the ten microarray platforms evaluated are currently

commercially available: Affymetrix, Agilent, Applied Biosystems (ABI), Amer-

sham (now GE Healthcare), Compugen (now Sigma-Genosys), Mergen, MWG

BioTech (now Ocimum Biosolutions) and Operon. The remaining two plat-

forms— academic cDNA and MGH long oligo arrays—are from academic

laboratories. The cDNA arrays were provided by the Cepko laboratory, and

comprised retinal and brain cDNAs from the Soares laboratory (University of

Iowa, BMAP project (http://trans.nih.gov/bmap/), which were amplified and

printed by J.R.S. and S.P. Oligonucleotides from both Compugen and Operon

were purchased by the Division of Biology at California Institute of Technology

and were printed together onto the same slide. A total of eight research

laboratories were involved in this collaboration. Descriptive details of the

different platforms and sites where the hybridizations were performed are

shown in Supplementary Data online.

To evaluate cross-laboratory consistency, a subset of the platforms was

conducted independently at a second laboratory using identical samples. This

portion of the study is still ongoing, but results from Affymetrix, Amersham

and Mergen platforms have already been completed and are reported here. The

laboratories in which the hybridizations were conducted are shown in Supple-

mentary Data online. Each laboratory provided the raw data sets and scanned

images for analysis.

Six of the ten microarray platforms (Agilent, academic cDNA, Compugen,

MGH long oligo, MWG and Operon) are considered to be two-dye platforms,

as they require the hybridization of two samples, whereas the others (ABI,

Affymetrix, Amersham and Mergen) are one-dye platforms. Because data based

on a single array are often considered insufficient to obtain conclusive results32,

five replicates of each sample were used to assess the degree of variation in the

expression data within each platform. The number five was chosen as a

reasonable compromise between the wish to reduce the effect of array-to-array

variability and resource limitations. The experimental design is shown in

Supplementary Data online. A total of 91 hybridizations were completed

and are reported in this manuscript.

All labeling and hybridization methods were completed as specified by each

manufacturer’s hybridization protocol. Image processing of the scanned images

were conducted using the manufacturer’s recommended scanners and settings.

Detailed description of the protocols used for each platform is provided in

Supplementary Data online.

Preprocessing of microarray data. Preprocessing methods included normal-

ization, transformation and filtering. Specific normalization methods were

chosen based on past microarray studies that have indicated their potential

advantages over other methods in single and dual-dye platforms44–46. In the

case of microarray data from single-dye platforms, normalization was per-

formed using quantile normalization46, where ten arrays (five for retina samples

and five for cortex) were considered as one group. Data from two-dye

platforms were normalized using Locally Weighted Scatterplot Smoothing

(LOWESS) normalization44,45. Because probes from Compugen and Operon

platforms were printed onto the same slide, LOWESS normalization was

performed on the whole chip before they were separated and analyzed in the

NATURE BIOTECHNOLOGY VOLUME 24 NUMBER 7 JULY 2006 837

A R T I C L E S
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



study. We also examined and confirmed that when this normalization was

performed for each platform independently, the results were similar (data

not shown).

Data transformation included both linear and percentile scaling of the raw

intensities, as well as log2 ratios between the two samples. The scaling

transformations were needed to allow comparison of raw intensities quantified

by different software packages. Linear scaling mapped the intensities of each

slide/channel into a scale of 1 to 100, linearly and analogously. This method was

used in measuring intra-platform coefficient of variations of the intensities.

Percentile transformation projected the data to a hundred discrete levels (that

is, 1 to 100) according to percentiles of the intensity values. Beyond making the

measurements among various platforms comparable, percentile scaling may be

useful to correct the artifacts introduced by different intensity distribution

characteristics among various platforms, as well as to purposefully neglect some

minor fluctuations in expression levels. Percentile transformation was mainly

used in the inter-platform comparisons.

Log2 ratios were computed to allow the comparison of single-dye and

two-dye platforms. When we evaluated intra-platform variations, five log2

ratios were obtained from five technical replicates of each two-dye platform.

For single-dye platforms, log2 ratios were obtained from five randomly

paired arrays across samples without replacement. The averaged log2

ratios of technical replicates for each platform were used to assess inter-

platform variation.

Stringent filtering for spot quality has been reported to improve consistency

across different platforms22,39. The filtering criteria chosen in the study were

either recommended by the vendors or have been broadly adopted by the

research community. Filtering was conducted at the spot (image) level, taking

into account both quality flags and signal-to-noise ratio thresholds. Ideally, all

the platforms should have been scanned and quantified using the same scanner,

with similar scanner settings. Because of the diversity of the technical

approaches of the various platforms, different scanners were used, and this

limited our ability to apply the same filtering criteria to all the platforms. In the

case of the Affymetrix and Amersham platforms, probe set and spot

quality flags were referenced, respectively. These meant only ‘present’ and

‘good’ calls were adopted, for Affymetrix and Amersham, respectively. The

signal-to-noise ratio threshold of 3 was used for ABI, in addition to removal of

flagged spots as recommended by the vendor. A signal-to-noise ratio threshold

was set to 2 for Agilent, Compugen, Mergen and Operon platforms. For

academic cDNA, MGH long oligo and MWG arrays, the images were scanned

using GenePix software 3.0 (Molecular Devices). The software automatically

generated flags at default settings for poor and missing spots, which were

removed. The effects of filtering for each platform are detailed in Supplemen-

tary Table 1c online.

Mapping of genes across platforms. Gene mapping was conducted using

annotation-based and sequence-based approaches. For the annotation-based

approach, MatchMiner47 was used to map UniGene (UG) clusters (UniGene

Build 136) and LocusLink (LL) identifiers by using the GenBank accession

numbers provided by each platform.

For the sequence-based approach, the February 2003 version of the mouse

reference sequences (UCSC version mm3) was downloaded from the UCSC

Genome Site (http://genome-archive.cse.ucsc.edu/goldenPath/mmFeb2003/

bigZips/) and used for mapping the probe sequences. The probe sequences

from each microarray platform were mapped to the mouse genome using the

BLAT stand-alone program48. The sequence alignment results were also parsed

so that only probe-to-exon matched pairs were extracted. Probe-

to-exon meant only aligned sequences positioned completely within an exon

were considered as a match. In the instances where multiple within-exon

matches for a probe sequence occurred, the best match in terms of the length

of ‘hit’ was selected. If no match was found, that probe was excluded. In this

way, the probes from different platforms were matched both at the gene level

by RS and on the exon level by RSEXON identifiers. The probe sequences

used for mapping ABI and Affymetrix had lengths of 180 and 255 base pairs,

respectively. Affymetrix uses 11 probe pairs to measure the expression level for

each gene and the 255 base pairs correspond to the length of the sequences

spanned by the 11 probe pairs (complete probe). The context sequences for

Affymetrix were obtained from their NetAffx analysis center49. For ABI, the

probe sequence for each gene on the array lies within the 180 base pairs used in

the mapping.

In cases where there was more than one probe that matched to a particular

identifier, the values were averaged. In most instances, however, each gene was

represented by only one probe on all platforms.

Evaluation of intra-platform and inter-platform data consistency. We chose

to measure data consistency by calculating CVs, correlation coefficients and

standard deviations of the difference between measurements. PCA was per-

formed to allow the display of axes corresponding to the largest variance in

multiple platforms. Additionally, the degree of deviation of each platform from

other platforms was quantified by defining outliers across various platforms’

measurements for each gene.

The CV is defined as the variation among multiple measurements in

proportion to their mean. We used CV to measure the reproducibility among

multiple replicate experiments within each platform. Besides the conventional

use of CV on channel-specific intensities, we also defined a segmental function

for the CV of log2 ratios. When the mean of log2 ratios was between –1 and +1,

the CV was equal to the s.d., otherwise, the conventional definition of CV was

applied. This was to avoid including small denominators to distort the CVs

considerably when a large proportion of probes having a mean of log2 ratio

close to zero are expected in microarray experiments.

Pearson and Spearman correlation coefficients were calculated for both intra-

and inter-platform comparisons. Intra-platform correlations consisted of com-

puting the correlations for both linearly transformed intensities within each

sample and their log2 ratios. For inter-platform comparisons, the correlations

were calculated based on the averaged log2 ratios. As the expression data were

not normally distributed (data not shown), we conducted two permutation tests

on inter-platform correlations, aiming to estimate the significance of the

correlation coefficients for the cross-platform probe matching. In both tests,

for any pair of platforms, averaged log-ratios and paired measurements were

randomly selected. The first test involved measurements chosen from the whole

data set for the given platforms. In the second test, the measurements where

chosen from a subset of data included in the list of matched probes between the

platforms. In both cases, 10,000 randomized sets of matched measurements

were created for each pair of platforms. Thus, empirical distributions of

correlation coefficients were calculated and empirical confidence intervals of

correlation coefficients were obtained to assess statistical significance.

The s.d. of the differences between matched measurements were computed as

another measure of data consistency. In the case of intra-platform agreement,

technical replicates were referred as ‘matched measurements,’ whereas each pair

of platforms was considered in the case of inter-platform agreement. Annota-

tion-based identifiers had a higher number of matched probes. Since there were

very few overlaps across ten platforms, the relative measurements that were

extracted for each matching option had to be observed in at least six platforms.

Furthermore, among these, the four platforms ABI, Affymetrix, Agilent and

Amersham were required to be represented, plus any additional two platforms.

PCA was performed on data from eight of the platforms, excluding the

academic cDNA and Compugen platforms. In addition, PCA included second

lab data from three one-dye platforms. PCA was conducted after standardiza-

tion so that each gene has a zero mean and unit s.d.

To examine which platforms were more prone to have measurements that

were markedly different from the others, we computed the frequency of outliers

for each platform. For a given gene that has been measured in at least five

platforms, if a platform’s measurement lies outside of the range of the mean

expression ratios ± 1 s.d., it was identified as an outlier.

The analyses were conducted using the R software environment (http://www.

R-project.org/), BioConductor packages50 and MATLAB (The MathWorks).

Biological validations. Molecular confirmation of microarray results is impor-

tant when checking for consistencies of expression measurements across

different platforms. We used the following criteria for selecting genes for

validation: (i) genes should be present in at least six platforms, (ii) they should

span the dynamic range and (iii) they should also include pairs with measure-

ments that were in disagreement. Since the gene coverage varied across the

platforms, we decided to select genes that were common across a minimum of

six platforms based on RSEXONs. The six platforms had to include four
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common microarray platforms: ABI, Affymetrix, Agilent and Amersham, and

any additional two others. Based on this criterion, 399 genes were identified

where two groups of genes were created based on their intensity. The groups

were derived from the percentile-transformed data, where three categories of

expression measurements were created: high (67–100 percentiles), medium

(34–66 percentiles), and low (1–33 percentiles). The first group included genes

that had combinations of high-high, high-medium and medium-medium

expression measurements for both samples. In the second group, the expression

measurements for both samples included genes that had combinations of high-

low, medium-low and low-low expressions. A total of 158 genes were validated

by QRT-PCR from these groups.

Biological validations for this study were conducted using QRT-PCR.

Samples identical to the ones used for the microarray experiments were used

for the biological validation step. The validation methods were conducted using

ProbeLibrary, now Roche Universal ProbeLibrary, on two different Roche

LightCyclers and TaqMan Gene Expression Assays on ABI PRISM 7900 HT

Sequence Detection System (Applied Biosystems). The present version of the

software allows exon-based primer designs, whereas we used a prior version

having lower sensitivity. We verified 74 and 91 genes using Universal Probe-

Library and ABI TaqMan Gene Expression Assays, respectively. Methods for

both approaches are described in Supplementary Data online. The primer

sequences for both Universal ProbeLibrary and TaqMan assay identifiers are

provided as Supplementary Table 3a online.

A total of 165 genes were validated by QRT-PCR. Pearson correlation

coefficients were computed for the log2 ratios for the set of genes validated

by QRT-PCR and the corresponding platform. Expression ratios measured by

QRT-PCR were calculated as follows:

log2 ratioðMR=MCÞ ¼ �ðCtMR � CtMCÞ

where CtMR and CtMC correspond to the mean cycle thresholds for mouse

retina and mouse cortex, respectively.

Accession numbers. The microarray data for the manuscript has been sub-

mitted to GEO OmniBus. The series record number is GSE4854.

Note: Supplementary information is available on the Nature Biotechnology website.
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