## Journal Club 11/4/20

The Laryngoscope Lippincott Williams & Wilkins, Inc. © 2004 The American Laryngological, Rhinological and Otological Society, Inc.

## Bilateral Bone-Anchored Hearing Aids (BAHAs): An Audiometric Evaluation

Claudia Priwin, MD; Stefan Stenfelt, PhD; Gösta Granström, PhD; Anders Tjellström, PhD; Bo Håkansson, PhD

### Study Rationale and Background

- BAHAs are being used for patients with conductive and mixed hearing loss
- Patients with symmetric hearing loss prefer bilateral amplification with hearing aids
- Patients in the study wearing bilateral BAHAs reported subjectively better hearing with 2 devices (better sound quality and directional hearing), and commonly wore both
- Is there objective hearing improvement with bilateral BAHAs?
  >Based on directional hearing, speech perception in quiet and noise and BMLD (binaural masking difference test)

#### C300 and Compact BAHAs are directly vibrating bone





#### **Bilateral BAHAs**

- Measurements of bone conduction sound transmission > difference in sound transmission from from one BAHA to each cochlea is less than 15dB (esp. lower frequencies)
- Are bilateral BAHAs truly improving binaural hearing or this just an effect of greater overall stimulation level through two amplifiers?
- Effect categories:
  - > Improved hearing thresholds
  - > Directional hearing
  - > Binaural hearing

#### **Bilateral BAHAs**

#### Head shadow effect



- <u>Directional hearing</u>: Ability to localize the spatial direction of sound
- <u>Binaural hearing</u>: Ability to use binaural cues (use the different sound information at the two cochleae to improve hearing)
  - Head-shadow effect: Sound presented to poor hearing ear has to pass through the head to get to other side, which attenuates speech intensity

#### Study population – Table 1

- 12 adult patients with bilateral BAHAs (> 1 year), 11/12 with daily use
- 9/12 with mixed HL, 3/12 with CHL
- 10/12 with symmetric SNHL (< 10 dB difference at 0.5, 1, 2 and 4 kHz)
- 2/12 with asymmetric SNHL (< 20 dB)

|        | Characteristics of the 12 Included Patients. |                |                      |                       |                  |                   |                      |                         |                    |                |                 |                 |                 |                 |          |
|--------|----------------------------------------------|----------------|----------------------|-----------------------|------------------|-------------------|----------------------|-------------------------|--------------------|----------------|-----------------|-----------------|-----------------|-----------------|----------|
|        |                                              |                |                      |                       |                  |                   |                      |                         | BAHA<br>Experience |                | First Side      |                 | Second Side     |                 |          |
| Number | Sex                                          | Age<br>(years) | Type of<br>BAHA Left | Type of<br>BAHA Right | Abutment<br>Left | Abutment<br>Right | First Fitted<br>Side | Subjective Best<br>Side | Uni<br>(years)     | Bil<br>(years) | AC (dB<br>HLac) | BC (dB<br>HLbc) | AC (dB<br>HLac) | BC (dB<br>HLbc) | Etiology |
| 1      | М                                            | 42             | Comp                 | Comp                  | S                | S                 | L                    | R                       | 14.0               | 6.7            | 55              | 17              | 27              | 20              | СО       |
| 2      | F                                            | 68             | C300                 | C300                  | В                | В                 | R                    | R                       | 17.5               | 15.1           | 87              | 52*             | 102             | 45              | CO       |
| 3      | F                                            | 55             | C300                 | C300                  | В                | В                 | L                    | L                       | 15.4               | 8.6            | 48              | 18              | 53              | 27              | CO       |
| 4      | F                                            | 60             | C300                 | C300                  | В                | В                 | R                    | R                       | 10.4               | 2.6            | 55              | 35              | 62              | 33              | CO       |
| 5      | М                                            | 58             | Comp                 | Comp                  | S                | S                 | R                    | R                       | 16.6               | 3.0            | 82              | 53              | 70              | 50              | CO       |
| 6      | F                                            | 65             | C300                 | Comp                  | В                | S                 | R                    | R                       | 16.9               | 2.9            | 73              | 43              | 68              | 43              | CO       |
| 7      | F                                            | 65             | C300                 | C300                  | S                | S                 | L                    | L                       | 10.7               | 9.7            | 50              | 28*             | 77              | 47              | CO       |
| 8      | F                                            | 51             | Comp                 | Comp                  | S                | S                 | R                    | L                       | 5.8                | 1.0            | 62              | 40              | 28              | 25              | EO       |
| 9      | F                                            | 47             | C300                 | C300                  | S                | S                 | L                    | L                       | 10.9               | 1.4            | 42              | 27              | 58              | 27              | CO       |
| 10     | F                                            | 52             | C300                 | C300                  | В                | S                 | L                    | R                       | 21.0               | 19.6           | 58              | 27*             | 67              | 32              | CA       |
| 11     | F                                            | 27             | C300                 | C300                  | S                | S                 | R                    | R                       | 15.2               | 1.0            | 50              | 10              | 48              | 7               | CA       |
| 12     | Μ                                            | 30             | Comp                 | Comp                  | В                | S                 | R                    | R                       | 17.0               | 10.1           | 38              | 8               | 48              | 15              | CA       |

## Study test setup: Free Soundfield – Figure 1

side)



- 12 speakers, 30° intervals
- Free soundfield tone thresholds were tested from 4 directions
- 3 conditions:

> unilateral (better) BAHA > unilateral BAHA (shadow

#### > bilateral BAHAs

#### Study test setup: Directional hearing

side)



- 12 speakers, 30° intervals
- Narrow-band noise at 0.5 or 2 kHz at 65 dB HL for 1 s
- 3 conditions:

> unilateral (better) BAHA > unilateral BAHA (shadow

#### > bilateral BAHAs

 Repeated x3 from each speaker (total 12 directions)

### Study test setup: Speech perception threshold



- Three- word sentences at 0° (3 lists with 10 sentences)
- In quiet and noise (65-80 dB HL)
- Noise was presented from either left or right or all speakers (surrounding noise)
  - 2 conditions:

> unilateral (better) BAHA > bilateral BAHAs

• Repeated x2

# Study test setup: Binaural Masking Level Difference (BMLD) Test



- Tests true binaural hearing
- Tested with bilateral BAHAs
- Pure tone presented in noise
- 3 conditions:

> Tone and noise presented equally to both sides

> Tones out of phase (180°) on both

sides, but noise levels the same

> Noise at both sides out of phase (180°), but tones in phase

- Sound directly supplied to BAHA transducer, no microphone
- 0.25, 0.5 and 1 kHz, at 65 dB HL, x2 repeats

#### Results: Free Soundfield – Figure 2



- Unilateral vs bilateral BAHA fitting
- Average improvement with bilateral fitting ~2-7 dB
- Greater when presented on shadow side with bilateral fitting: ~5-15 dB, as head-shadow effect is minimized (but: highest SD)
- Great variability, no significance

#### Results: Directional Hearing – Figure 3



- Patients ability to locate sound source
- Larger circle = more responses, correct responses along diagonal line

#### Results: Directional Hearing – Figure 4



- Results presented as correct score or whether within 30° of stimulation at 0.5 and 2 kHz.
- Unilateral BAHA sides are similar, and close to chance (8.5% correct, and 25% within 30°)
- Bilateral BAHA increases ability to locate sound correctly (Significance??)

#### Results: Speech perception threshold



- Average threshold in quiet:
  - Unilateral BAHA: 38.7 dB HL
  - Bilateral BAHA: 33.3 dB HL
- Significant improvement of 5.4 dB (P= .001).
- Speech perception in noise:
  - Noise on better side: 3.1 dB SNR improvement in bilateral BAHAs vs unilateral
  - Noise on shadow side: 1 dB SNR decrease in bilateral BAHAs vs unilateral
  - Surrounding noise: 2.8 dB SNR improvement in bilateral BAHAs vs unilateral
- No significant improvement of speech perception in noise with bilateral BAHAs

## Results: Binaural Masking Level Difference (BMLD) – Figure 5



- 1) Tone and noise presented equally to both sides
- 2) Tones out of phase (180°) on both sides, but noise levels the same
- 3) Noise at both sides out of phase (180°), but tones in phase

#### Discussion points

- Results overlap with prior studies: Slight, significant improvement in speech perception in quiet, and trend towards improvement in directional hearing and BMLD.
- Different testing setup may explain slightly lower scores for directional hearing
- Speech perception in noise only increased by 2.8 dB> deactivation of one BAHA in directed noise
- Patients with CHL did better than patients with mixed HL> SNHL may be limiting factor to bilateral BAHA benefit