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Progress in understanding humoral immunity has been

accelerated by the powerful experimental approaches of

genetics, genomics and imaging. Excellent reviews of these

advances appeared in 2015 in celebration of the 50th

anniversary of the discovery of B cell and T cell lineages in the

chicken. Here we provide a contemporary model of B cell

differentiation, highlighting recent publications illuminating

germinal center (GC), memory B cell and antibody-secreting

plasma cell biology. The important contributions of CD4T cells

to antibody responses have been thoroughly reviewed

elsewhere.
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Introduction
The antibody response employs intercellular communi-

cation, through direct contact and soluble mediators, in

the exquisitely organised structure of secondary lym-

phoid organs [1–3]. These signals induce or silence ge-

netic programs of activation, migration, survival and

differentiation, all potentially modulated by epigenetic

modifiers. Figure 1 illustrates the process and its partici-

pants as it occurs in the spleen; similar processes can be

observed in lymph nodes (LN), or ectopically in inflamed

tissue.

Overview of the B cell response to antigen in
vivo
In the resting state, polyclonal B cells and T cells are

compartmentalized and non-dividing. Once antigen
www.sciencedirect.com 
enters, it is captured by professional antigen presenting

cells, including B cells, macrophages and dendritic cells

(DC). Within 1 day in the mouse, a small number of B

cells specific for the antigen (�1–3 cells initially; [4]) will

migrate under the influence of changing chemokine

receptor expression [5,6], drawn towards the T cell zone.

Simultaneously, CD4+ T cells that have detected their

cognate antigen presented on DC, will begin to express

the transcriptional repressor Bcl6 [6], a master regulator of

the T follicular helper cell (Tfh) lineage [7]. Bcl6 influ-

ences chemokine receptor expression, such that early Tfh

cells migrate towards the B cell follicle under the influ-

ence of CXCR5 expression [8]. At the T:B interface, a

cognate interaction occurs in which activated B cells

provide further processed antigen to the T cell receptor

(TCR), soliciting the secretion of cytokines (IL6 and

IL21) that reinforce Bcl6 expression and the Tfh pheno-

type [8–11]. Subsequently, important receptor:ligand

interactions are formed, including CD40:CD40L, ICO-

SL:ICOS, and homotypic interactions between SLAM

proteins [12,13]. These interactions ensure that the cog-

nate B and T cell remain in contact to initiate the next

phase of the response.

A day or two later, the cognate B and T cells are moving

again. The mature, antigen-specific Tfh move to the

center of the B cell follicle. The activated B cells have

multiple fates available to them [6]. First, some B cells

will move to the interfollicular zone and differentiate into

short-lived antibody secreting cells (ASC), providing a

rapid, albeit low affinity, antibody response to the infec-

tion. Second, some B cells move into the pre-GC, likely

driven by Bcl6 up-regulation and changes to chemokine

receptor expression. There they will undergo affinity

maturation in the developing GC. Lastly, some B cells

will differentiate into early memory B cells, isotype

switched but showing no evidence of affinity maturation.

The distribution of any clone among these outcomes

appears to be an intrinsic property of the clone, related

to division potential and influenced by affinity but not by

isotype [14��].

The GC reaction serves a number of critical roles. It is

where somatic hypermutation (SHM) of immunoglobulin

(Ig) variable region genes occurs, catalysed by activation-

induced cytidine deaminase (AID; [15]). B cells cycle

through the light and dark zones (LZ and DZ) of the GC

undergoing iterative cycles of selection and rapid prolif-

eration and mutation, respectively, timed intrinsically and

facilitated by fluctuating CXCR4 and CXCR5 expression
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Figure 1
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The figure indicates the various cell types and molecules that come into play as B cells are activated and enter into a T cell dependent antibody

response. The process follows a time frame (proceeding vertically down the page) that initiates in spleen and lymph nodes, and finishes in the

bone marrow.

Current Opinion in Immunology 2016, 39:59–67 www.sciencedirect.com



Update on germinal centers, memory and plasma cells Corcoran and Tarlinton 61
[16,17]. Affinity maturation occurs through competition

by mutated B cell receptors (BCRs) of the GC B cells for

the antigen decorating the follicular dendritic cells (FDC)

and the limited number of Tfh available to provide help.

Tfh are motile, interacting with many B cells and making

frequent and durable contacts with cells expressing the

most Ag/MHC on their surfaces. ICOS/ICOSL plays a

central role in this process [18�]. The role of BCR signal

strength is unclear; rather, a greater capacity to capture

antigen and present it to Tfh cells appears to drive the

process [19].

The GC is also the site of differentiation of long-lived

memory B cells and plasma cells. The ASC exported from

the GC ultimately persist in bone marrow niches that

support their longevity [20,21], while memory B cells,

although showing some predilection to remain in the

organ of their formation [22,23], recirculate through the

lymphoid system. Regulating the output of the GC is

critical, as SHM potentially generates auto-reactive or

otherwise mutated B cells that may lead to autoantibody

production or to GC-derived B cell lymphomas [24,25].

Regulators of GC B cells
A number of signalling molecules and transcriptional

regulators have been implicated in GC biology [16,17].

While GC B cells require BCR signalling capacity, this is

tempered by cell cycle-dependent fluctuations of Shp1

phosphatase levels [26�,27�]. Instead, the ability to cap-

ture and present antigen to Tfh cells, and to receive and

respond to T cell signals is critical to affinity maturation in

GC B cells [18�,28]. It was recently shown that by

engineering a subset of B cells to express high Ag:MHCII

levels, Tfh cell help was enhanced, and this increased

expression of cell cycle and metabolism gene programs,

including Myc, E2F and their target genes [29��]. This

significantly shortened S phase in the selected GC B cells.

In turn, affinity increased as cell cycle time decreased in

the cells receiving strong T cell help.

Other recent work shows that CD40 and Icos ligands

(CD40L, IcosL) cooperate through a feed-forward mech-

anism to ensure GC B cells with the highest affinities

successfully compete for limited Tfh help [18�]. A B cell-

intrinsic capacity to respond to IL21 and IL4 is also essential

for optimal GC responses [30–32]. Impacting indirectly on

GC B cell responses and antibody affinity are fibroblast-like

cells (including FDC) in secondary lymphoid organs that

express Notch ligands essential for development of Tfh,

certain DC and marginal zone B cells [33].

A ‘‘GC gene signature’’ [34] highlighted the major sig-

nalling pathways (BCR, NFkB, CD40 and Myc) and

signature transcriptional regulators of the GC

(Figure 1). Bcl6, the master regulator of the GC, facil-

itates SHM by inhibiting the DNA damage response, and

differentiation [35]. Bcl6 acts cooperatively with Bach2,
www.sciencedirect.com 
another essential GC gene repressor [36], through co-

regulation of several target genes [37].

The NFkB pathway is widely implicated in signalling in

lymphocytes for activation, growth and survival. Howev-

er, a surprisingly small proportion of GC B cells display

the active nuclear form of NFkB. The use of conditional

mutants of NFkB subunit genes has shown that specific

members of the canonical NFkB family are differentially

required, both temporally and mechanistically, for GC B

cell maintenance and for plasma cell differentiation

[38�,39�]. Processing NFkB1 is absolutely required for

B cell differentiation and survival following antigen en-

gagement, through the activation of IRF4 and Bcl2,

respectively [39�]. c-Rel maintains the GC after the

DZ and LZ are established (beyond day 7, to day 14 after

immunization), not through supporting survival, but by

up-regulating metabolic pathways supporting cell growth.

Plasma cell differentiation is c-Rel independent. In con-

trast, RelA is dispensable for GC formation, expansion,

class switch recombination (CSR) and affinity maturation,

but its loss diminishes ASC differentiation in vivo and in
vitro. Interestingly, RelA deficiency reduces Blimp1, but

not IRF4 levels, in vitro.

Myc, another factor enabling proliferation and contribut-

ing to B cell transformation, is required for GC formation

[40,41]. DZ B cells, some of the most rapidly dividing

mammalian cells known, should universally express Myc,

but surprisingly, it is expressed by only a minority of GC B

cells, and these are dispersed through the LZ and DZ [17].

However, Myc+ GC B cells display the highest antigen

affinity, reflecting a history of SHM and cell division. We

have recently found that lymphocyte division is strictly

dependent on Myc protein levels achieved upon initial

activation (S Heinzel, PD Hodgkin and LMC, in prepara-

tion), which may help to explain how the successfully

selected (higher affinity) GC B cell clones are able to spend

longer in the proliferative phase in the DZ [42��].

An updated ‘‘GC gene signature’’ arose from our recent

transcriptional profiling of peripheral B lineage cells in

the mouse [43��]. Interestingly, some transcription factors

not yet implicated in GC biology showed identical pat-

terns of expression to known, essential GC regulators like

Bach2, Pou2af1, Mef2b and its direct target, Bcl6 [44].

They include Mybl1 (also recognized by Ding et al. [45] as

a Bcl6-regulated gene in a GC diffuse large B cell lym-

phomas), Phf19 (an epigenetic regulator; [46]) and Apitd1

(the DNA-binding component of the Fanconi anemia

(FA) core complex that mediates genome maintenance

[47]). These factors, among others [43��], deserve atten-

tion as potential new players in GC B cell biology.

Regulators of B cell memory
Signals dictating GC B cell differentiation along the mem-

ory pathway remain undetermined. While the existence,
Current Opinion in Immunology 2016, 39:59–67
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persistence and functionality of early memory B cells,

arising prior to GC initiation, are now confirmed [48],

the relevant molecular and cellular processes remain un-

clear. Despite this, much has recently been learned of

memory B cell biology. Considerable importance was given

to the existence of IgM memory, particular for its perceived

unique capacity to differentiate into GC following reacti-

vation, which was distinct from IgG memory, that showed a

predisposition to differentiate into ASC [49,50]. Thus the

IgM memory compartment is designated as the repository

of very long-lived immune memory, only utilized when

alternatives had failed and then used to restore the status

quo in regenerating both PC and IgG memory B cells

through re-running the GC reaction. Mechanistic support

comes from the observation that IgG BCR are biochemi-

cally distinct from IgM BCR through the antigen-induced

recruitment of GRB2 to a unique, conserved tyrosine motif

in their cytoplasmic tails and their subsequently enhanced

differentiation into plasma cells [51]. Conversely, a study of

memory B cell subsets in mice, defined by expression of

PD-L2, CD80 and CD73, concluded that the bias towards

PC or GC differentiation could reflect the maturity of the

memory compartment, and to isotype. That is, more recent

or immature memory B cells, defined as negative for CD80

and PD-L2, preferentially reformed GC upon transfer and

restimulation, while more mature memory B cells, (PD-

L2- and CD80-positive), preferentially formed PC [52�].
These outcomes, however, may reflect the experimental

system as much as intrinsic properties of the memory B

cells themselves, as they used purified populations and

were done in the absence of competing immunoglobulin.

A striking feature of T cell memory has been the discov-

ery of resident memory cells, which show tissue tropism

and are functionally specialised. Recent careful analysis

of memory B cells formed either at the site of influenza

infection, the lung in this case, or more distant, in the

spleen, suggests that tissue tropism may also be a feature

of B cell memory. Adachi et al. reported persistent GC in

the lung with a higher incidence of V gene SHM and,

most interestingly, significantly higher incidence of cross-

reactive B cells able to neutralize flu escape variants [22].

While the basis of this difference is unknown, it might

indicate that there is a degree of specialisation in aspects

of the GC reaction occurring at the site of infection,

especially if that site is not a specialised, secondary

lymphoid organ. The generality of this finding, however,

is yet to be determined as the distribution of memory B

cells in Rhesus monkeys following influenza A infection

showed a predilection for mediastinal lymph nodes rather

than lungs [53].

The relationship between human memory B cell subsets

has become somewhat clearer through use of RNA se-

quencing and through examination of clonality in the

various subsets defined by isotype and CD27 expression.

Budeus et al. [54] for example, found that the vast
Current Opinion in Immunology 2016, 39:59–67 
majority of memory B cells were GC-derived, were

members of very large clones and that the same clone

could be identified in multiple memory subsets, suggest-

ing a stochastic distribution rather than one pre-deter-

mined by the location of the B cell, age of the human or

the nature of the antigen. Interestingly, however, the

nature of B cell memory is affected by the nature of

the antigen when the antigen is persistent. At least this

appears to be the explanation for the appearance of

atypical memory B cells in responses to persistent para-

sites and viruses [55,56]. These memory B cells, with

their unique phenotype of excessive inhibitory receptor

expression, show significantly diminished signalling from

the BCR such that proliferation and differentiation are

effectively blocked [57].

The persistence of memory B cells remains an enigma.

While some studies have indicated differences in persis-

tence based on isotype, with IgM lasting longer than IgG

[49], others indicate both IgM and IgG are equally longer-

lived quiescent cells than naı̈ve B cells [58]. Yet another

study reported the surprising result of continuous sculpt-

ing of the IgA memory compartment through an ongoing

response driven by the microbiota in the Peyer’s patches,

in both mice and humans [59��], suggesting continuous

replenishment of memory. Autophagy has been reported

as a unique requirement for memory B cell persistence,

although the rationale remains unclear [60]. While mem-

ory B cells form independently of autophagy, transcrip-

tional regulators of autophagy increase over time. The

capacity to recycle cellular components likely contrib-

utes to the memory B cell’s capacity for long-term

survival.

Regulators of ASC differentiation and
maintenance
The majority of long-lived plasma cells arise from B cells

selected in the GC. Signals that initiate their differentia-

tion must extinguish the B and GC cell transcriptional

programs (dominated by Pax5, Bcl6 and Bach2) to enable

the opposing program of terminal differentiation (led by

Irf4, Blimp1 and Xbp1) to act [61]. Plasmablasts then exit

the GC and move through the blood to specialist niches in

the bone marrow [20,62]. There, reticular cells and mye-

loid cells, principally eosinophils, interact with plasma

cells to create a supportive niche in which they survive for

long periods. Survival is mediated by signals from

CXCL12, April and CD80 on the niche cells, and recep-

tors CXCR4, BCMA and CD28, respectively, on the

plasma cells, all ultimately coalescing on Mcl1 as the

dominant pro-survival protein for ASC [63]. Plasma cells

may actively orchestrate their life in the BM niche, as

they are metabolically active, and secrete a number of

inhibitory and stimulatory cytokines [43��,62].

Among the extrinsic signals that drive ASC differentiation

are CD40L and cytokines from Tfh, signalling through
www.sciencedirect.com
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Erk1 and 2 and NFkB, where the role of RelA may be

critical [38�]. They induce Blimp1, and reduce Irf8,

Pax5, Bcl6 and Bach2 expression [62]. A signal from

CD28 was recently shown to require Vav, but not PI3K,

and to act in BM, but not splenic plasma cells, to

positively influence Blimp1 expression and plasma cell

maintenance [64].

Important intrinsic regulators of haematopoietic cells and

B cells have recently been newly implicated in plasma

cell biology, or their influences have been revealed

through the generation of compound mutant mice. The

importance of Ets family proteins Irf8 and PU.1 in inhi-

biting plasma cell differentiation, through competition

with Irf4, was emphasized by accelerated ASC differen-

tiation of double knockout (DKO) B cells in vivo and in
vitro [65]. Similarly, the modest repression by Bcl6 and

Bach2 on ASC differentiation was strongly increased in

DKO mice, confirming their cooperation in maintaining

the GC phenotype of B cells, but also highlighting many

non-overlapping roles [37]. Antagonism between c-Fos

and Fra1 for binding to AP-1 sites in the Blimp1 gene was

recently shown to activate or silence its expression, re-

spectively, and to consequently inhibit or abnormally

enhance plasma cell differentiation [66].

Myb, long known as a mediator of differentiation in

haematopoietic cells [67] is required for GC-derived

plasmablasts to exit their organ of formation and migrate

to the bone marrow for long-term survival [68�]. In the

absence of Myb, Ig class switched plasmablasts, generat-

ed after immunization or infection, failed to enter the

blood, but accumulated in the spleen, where they were

mis-localized. The effect of Myb loss was B cell intrinsic,

but did not impact GC formation. The primary defect

detected was an inability for GC-derived plasmablasts to

migrate in response to CXCL12 and thus contribute to

the long-lived BM plasma cell pool.

A ‘‘Plasma cell signature’’ was identified through a com-

parison of the transcriptomes of B cell and plasma cells

populations [43��]. It comprises �300 genes that were >3-

fold more highly expressed in the ASC populations com-

pared to the B cell populations compared. Known reg-

ulators of plasma cell differentiation (e.g. Irf4, Blimp1/

Prdm1, Xbp1) were confirmed, and gene expression

differences between plasma cells residing in different

organs or generated under different conditions were

noted. This analysis will likely reveal new regulators of

plasma cell behaviour. One example is Zbtb20, a BTB-

POZ domain protein recently found to be required for the

long-term survival of plasma cells in the BM [69�,70�].
Zbtb20 is a direct target of Irf4 activation that, when over-

expressed in vitro, accelerates ASC differentiation. It may

act from the GC stage to antagonise its close relative,

Bcl6. Wang and Deepta et al. [69�] showed that the effect

of Zbtb20-deficiency on ASC maintenance, which was
www.sciencedirect.com 
adjuvant-dependent in their system, could be rescued by

the pro-survival protein Bcl2 [69�].

Other putative novel regulators of plasma cell biology

were suggested by patterns of expression that closely

mimicked those of the ‘master’ ASC regulators Irf4 and

Blimp1 [43��]. These include Cited2 (Cbp/p300-interact-

ing transactivator), recently implicated in improved hae-

matopoietic stem cell maintenance [71], Creb3l2 (CAMP

Responsive Element Binding Protein 3-Like 2), a trans-

activator induced by ER stress [72], and Trib1 (Tribbles

Pseudokinase 1) a regulator of MAPK kinases [73].

Post-transcriptional and epigenetic regulation
Xbp1, a major facilitator of high-level Ig secretion by

plasma cells [74], is regulated post-transcriptionally. Its

mRNA is processed in response to the unfolded protein

response (UPR) of the endoplasmic reticulum of highly

secretory cells [75]. The stress sensing kinase IRE1a

catalyzes the endonucleolytic cleavage of Xbp1 mRNA.

Recently RTCB, the catalytic subunit of the tRNA ligase

complex, was identified as the enzyme that ligates the

processed mRNA to generate a transcript encoding ma-

ture, functional Xbp1s [76�].

Micro RNAs (miRNAs), which regulate mRNA stability

and translation, impose a further level of regulation on

many biological processes, including the humoral im-

mune response. A recent example is miR-155, a known

inhibitor of PU.1 expression [77]. Disabling the PU.1-

miR-155 interaction sequence separately on both PU.1

mRNA and miR-155 revealed the PU.1-specific and

broader effects of this regulatory axis, with only a partial

overlap of gene expression changes between the mutants.

Both mutations modestly elevated PU.1 expression and

consequently increased PU.1 target gene expression.

Many aspects of B cell-T cell interaction were affected,

as was ASC differentiation.

MiR-148a is the most abundant miRNA in mouse and

human plasma cells, and its levels are also strongly

induced during ASC differentiation in vitro [78]. miR-

148a targets the mRNAs for Bach2 and Mitf, known

repressors of Blimp1 and Irf4, reducing their expression

and thereby enhancing ASC differentiation. In addition,

miR-148a was able to reduce the expression of cell death

mediators PTEN and Bim.

Mir-17-92, which also influences early B cell develop-

ment, has been shown, via conditional deletion, to facili-

tate homing of plasma cells generated during a T cell

dependent response to the BM [79]. Selective depression

of the IgG2c response was also seen. These effects were

partly mediated by miR-17-92 directly targeting the

chemokine receptor SIPR1 (which mediates cell egress

from lymphoid organs) and Ikaros (which regulates Cg2c

germline transcription), respectively.
Current Opinion in Immunology 2016, 39:59–67
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The role of epigenetic modification in GC B, memory B

and plasma cells is now being appreciated [80]. For

instance, the transcriptional profiles of naı̈ve and memory

B cells are similar, despite the cells responding with quite

different behaviour upon exposure to antigen. Some of

the difference has now been linked to different patterns

of histone modification (histone 3 acetylation and meth-

ylation) between the two cell types. One model posits

that co-existence of bivalent marks (both activating and

repressive) on the same gene create a cell poised for rapid

responses, typical of those occurring in a GC response.

Acquisition or loss of such histone ‘‘marks’’ accompanies

B cell activation, and mutation of the histone modifying

enzymes changes B cell behaviour, sometimes subtly, in
vivo. For example, Ezh2, a histone methyltransferase of

the polycomb group, is highly expressed and required

during division of GC B cells and plasmablasts, but is

switched off in non-dividing memory and plasma cells.

Interestingly, Ezh2 and Bcl6 share some target genes [81].

The histone acetyltransferase, Moz, also regulates GC B

cell division, and contributes to Bcl6 expression [82].

Both regulate affinity maturation and memory B cell

and ASC differentiation. Interestingly treatment of mice

with histone deacetylase inhibitors (HDACi) revealed

existing plasma cells and GC formation to be sensitive,

but existing memory B cells remained largely unaffected

[83].

Histones can also be modified by ubiquitination, and loss

of MYSM1, a histone 2A deubiquitinase, was found to

accelerate ASC differentiation [84]. MYSM1 represses

differentiation mechanistically by coordinating histone

modifications and transcription factor recruitment at

the Pax5 gene, activating it. Both T cell dependent

and independent antibody responses were heightened

in the MYSM1 mutants.

DNA methylation patterns change significantly during

the B cell response. Epigenetic gene regulation by DNA

methylation is mediated by a family of DNA methyl

transferases [85]. Very recent work has revealed that

AID, the enzyme mediating SHM and CSR, catalyses

the demethylation of many CpG sites in genes in B cells

[86��]. In both mice and humans, AID was found to

catalyse the vast majority of DNA methylome changes

during the GC response, and these frequently co-local-

ised with AID’s deamination sites and double strand

breaks. The role of AID in DNA demethylation, inde-

pendent of its known role in affinity maturation and class

switching, is a new area for investigation.

Concluding remarks
While work over the past decade has provided great

insight into the B cell response to antigen and the

consequent differentiation, more recent work is defining

its regulation in greater molecular detail. The mechanics

of B cell selection and affinity maturation in the GC are
Current Opinion in Immunology 2016, 39:59–67 
more clearly understood, with the importance of Tfh-

mediated help, and cell division regulation highlighted.

There is scope for new insights into GC responses and

humoral memory, through the identification of new reg-

ulators, while new roles for well-known proteins such as

NFkB, Myb and AID are being discovered. Finally, the

exquisite control and almost infinite versatility of the

antibody response is likely the consequence of the fi-

ne-tuning of regulatory hierarchies by epigenetic or post-

transcriptional means.
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