Solexa Data Crunching

David Lapointe
March 20, 2008
Data Crunching

- Binar – A Tour
- Resources on Binar
- How Data is Crunched
- Other Resources
Binar
Binar: Components

- HPL145
- DELLPE6850
- Clariion
- DELLSC1435
More Specs

- **HPL145**
 - 2 dual core Opteron/4 Gb mem
 - 55 nodes

- **DELLPE6850**
 - 4 quad core Intel/64 Gb mem
 - 2 nodes

- **DELLSC1435**
 - 2 dual core Opteron/4 Gb mem
 - 25 nodes
 - Infiniband capable
Cluster Use/Etiquette

- Use queue system to run jobs
 - Sun Grid Engine queueing
 - Fair share queueing is in use
- File space is not storage
 - Do not store data on the cluster
 - Cluster has 2.0 Tb only for workspace
 - 23 Active Users
Queues

$qsub$ script basic form
$qstat$ shows jobs in queue
$qstat$ |grep user shows jobs for username

Info for Binar and Sun Grid Engine is online at
http://inside.umassmed.edu/is/acs/ResearchComputing/researchclusters.aspx
#!/bin/bash
#$ -S /bin/bash <- specify shell
#$ -cwd <- use current working dir
#$... other sge parameters
PATH=<path to your program>:PATH
export PATH

...rest of script
Then submit script within working directory
$qsub –cwd script
Scripts

It is very important to set custom paths, esp for programs that you write, or using bioperl.

/share/… is common to all nodes.
/export/home/<user> (your home directory) is available to remote nodes.
Important Directories

/share/apps/bin commonly used programs
/share/apps/pipeline/… Solexa pipeline progs

/share/nemo/Genomes contains genome directories formatted for Eland
/share/nemo/Genomes/hg18
/share/nemo/Genomes/mm9
Resources on Binar

- EMBOSS (similar to GCG, scriptable)
- Clustalw, T_Coffee - multiple alignment
- Phylip, MrBayes - phylogenetic
- BLAST, mpi-blast
- HMMER
- Bioperl, biopython

These have their own directories.
Current Genomes on Binar

- hg18 Human (UCSC)
- mm9, mm8 Mouse (UCSC)
- dm5.5, dm5.4 Drosophila (Flybase)
- yeast SGD
- z7v Zebrafish
- ceWS187 C.Elegans

/share/nemo/Genomes/xxxx
Creating a Genome file for Eland

You can run eland against a custom Genome.

2. Each piece (e.g. a chromosome) must be a separate fasta file.

3. Create a directory for the genome

   ```
   mkdir ~/mygenome
   ```

4. Run squashGenome

   ```
   /share/nemo/pileline/Eland/squashGenome ~/mygenome path/to/Fasta/*\.fasta
   ```

5. More detail in Pipeline docs
Pipeline processing

- Three phases
 - Image Analysis - Firecrest
 - Base Calling - Bustard
 - Sequence Mapping - Gerald

- Initial Run to generate Cross-talk and offsets
- Run the first two by lane
 - If you specify Genome Gerald can be run
 - If we don’t have the genome, let us know what and where, then we can install it.
Post-processing

- When runs are done several files are available
 - quality files, base calls
 - sequences, remapping results
 - summary data
- These are packaged and delivered to you.
- Let me know if you need custom programs for analysis, i.e. ones not delivered with the pipeline
Resources

- Cluster info
 http://inside.umassmed.edu/is/acs/ResearchComputing/researchclusters.aspx

- Pipeline Info
 http://biotools.umassmed.edu/BIOCORE/pipeline

- Solexa Google Group
 http://groups.google.com/group/solexa

- Bioc-Seq (New bioconductor group)
 https://stat.ethz.ch/mailman/listinfo/bioc-sig-sequencing

- UNIX On-line Help
 http://biotools.umassmed.edu/unixhelp