For the latest COVID-19 campus news and resources, visit umassmed.edu/coronavirus.

Buscar Close Search
Buscar Close Search
Page Menu

Two recent publications in the Schiffer Lab

Date Posted: lunes, febrero 03, 2020


The Schiffer Lab recently had two papers published in the Journal of Chemical Theory and Computation, and ACS Chemical Biology. Read the abstracts below and take the links to the full text.

Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease.

Abstract:
Celia Schiffer, PhDOver the past several decades, atomistic simulations of biomolecules, whether carried out using molecular dynamics or Monte Carlo techniques, have provided detailed insights into their function. Comparing the results of such simulations for a few closely related systems has guided our understanding of the mechanisms by which changes such as ligand binding or mutation can alter the function. The general problem of detecting and interpreting such mechanisms from simulations of many related systems, however, remains a challenge. This problem is addressed here by applying supervised and unsupervised machine learning techniques to a variety of thermodynamic observables extracted from molecular dynamics simulations of different systems. As an important test case, these methods are applied to understand the evasion by human immunodeficiency virus type-1 (HIV-1) protease of darunavir, a potent inhibitor to which resistance can develop via the simultaneous mutation of multiple amino acids. Complex mutational patterns have been observed among resistant strains, presenting a challenge to developing a mechanistic picture of resistance in the protease. In order to dissect these patterns and gain mechanistic insight into the role of specific mutations, molecular dynamics simulations were carried out on a collection of HIV-1 protease variants, chosen to include highly resistant strains and susceptible controls, in complex with darunavir. Using a machine learning approach that takes advantage of the hierarchical nature in the relationships among the sequence, structure, and function, an integrative analysis of these trajectories reveals key details of the resistance mechanism, including changes in the protein structure, hydrogen bonding, and protein-ligand contacts.


Molecular and Structural Mechanism of Pan-Genotypic HCV NS3/4A Protease Inhibition by Glecaprevir.

Abstract:
Molecular and Structural Mechanism of Pan-Genotypic HCV NS3/4A Protease Inhibition by Glecaprevir.Hepatitis C virus, causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well-known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a, and 5a in complex with GLE. Comparison with the highly similar grazoprevir indicated the mechanism of GLE's drastic improvement in potency. We found that, while GLE is highly potent against wild-type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.

For more about the Schiffer Lab, please visit www.umassmed.edu/schifferlab