Campus Alert: Find the latest UMMS campus news and resources at umassmed.edu/coronavirus

Search Close Search
Page Menu

Neil Aronin

 

 

 

 

UMassMed Faculty Page

Inventions:

Title: Novel Metabolically Stable Oligonucleotide Conjugates. UMMS16-09; Patent Pending. 

  • The invention discloses novel hydrophobically-conjugated oligonucleotides useful for RNA interference. The oligonucleotide conjugates are characterized by efficient RISC entry, minimum immune response and off-target effects, efficient cellular uptake without formulation, and efficient and specific tissue distribution.

Title: Fully Stabilized Assimetric siRNA Compounds: an Optimal Scaffold for Conjugate Mediated Delivery. UMMS15-25; Patent Pending. 

  • This invention discloses hydrophobically-modified siRNA, featuring an advanced stabilization pattern, "hsiRNA-ASP". These siRNA compounds having the following properties: (1) fully chemically stabilized (i.e., no unmodified 2'-OH residues); (2) asymmetry; (3) 11-16 base pair duplexes; (4) alternating patten of chemicically-modified nucleotides (e.g., 2'-flour and 2'-methoxy modifications); (5) single-stranded, fully phosphorothioated tails of 5-8 bases. siRNAs with these structural properties show a dramatic enhancement in potency (5-10) fold in unassisted delivery. Also embodied are hsiRNA-ASPs conjugated to targeting agents including, but not limited to, cholesterol. Further, alteration of hsiRNA-ASP PS content has a major impact on tissue distribution and oligonucleotide uptake making these compounds very attractive therapeutic agents.

Title: OLIGONUCLEOTIDE COMPOUNDS FOR TARGETING HUNTINGTIN MRNA. UMMS14-51; Patent 9,809,817

  • This new invention spans from the discovery of potent silencing site that was previously unidentified on Huntington gene (htt) through screening of more than 200 compounds. Conventional siRNAs will target this 3’ UTR site for potent inhibition.  Efficacy was demonstrated using different siRNA configurations in several cell types and primary neurons that may aid research and future therapeutic applications. 

Title: Efficient Exosomal Loading Using Hydrophobically Modified Therapeutic Oligonucleotides. UMMS14-09; Patent Pending.

  • This novel invention discloses a novel RNAi delivery vehicle. Specifically, describing methods of loading exosomes with hydrophobically modified nucleic acids which exhibit a much higher loading efficiency than methods currently used (i.e. electroporation, transfection with cationic lipid reagents, and ultracentrifugation). 

 

Innovation TopicsGene TherapyRNAi/micro-RNA TherapyGene therapy improvementHuntingtin’s disease