REVIEW
A Molecular Classification of Congenital Neutropenia Syndromes

Laurence A. Boxer, MD1 and Peter E. Newburger, MD2*

Current knowledge on the molecular pathogenesis of severe congenital neutropenia indicates that the clinical diagnosis includes a heterogeneous group of disorders following different patterns of inheritance. Similarly, multifaceted syndromes associated with neutropenia can be classified molecularly, which in turn allows for a better understanding of the basis of the neutropenia. Many of the neutropenia disorders can be treated with G-CSF (filgrastim) to increase the neutrophil count, thereby reducing infection morbidity and mortality. In some instances hematopoietic stem cell transplantation remains the only curative treatment currently available. This review describes and classifies, on a molecular basis, both primary congenital neutropenia and multifaceted syndromes associated with neutropenia. Pediatr Blood Cancer 2007;49:609–614. © 2007 Wiley-Liss, Inc.

Key words: agranulocytosis; congenital neutropenia; leukopenia; primary immunodeficiency

INTRODUCTION
Severe congenital neutropenia includes a variety of hematological disorders characterized by severe neutropenia with absolute neutrophil counts (ANCs) below 500/µl and associated with severe systemic bacterial infections from early infancy. The genetic basis of many of the inherited forms of congenital neutropenia have been documented. Genetic alterations have also been identified in multifaceted syndromes accompanied by neutropenia, which have allowed a further sub-classification of the multifaceted syndromes with neutropenia as detailed below.

CLASSIFICATION OF PRIMARY NEUTROPENIA
Inherited defects in bone marrow production of leukocytes are characterized by selective loss of neutrophil production without accompanying congenital anomalies. The diagnosis is generally based on clinical and laboratory features, which may now be supplemented by genetic testing (Table I).

Disorders of Granulocytopenia

Reticular dysgenesis. Complete failure of myeloid and lymphoid development leads to reticular dysgenesis, a very rare and severe form of combined immunodeficiency [1]. It is characterized by severe leukopenia, defective cellular and humoral immunity, and absent lymphoid tissue. Erythroid and megakaryocyte development is normal. Treatment is with hematopoietic stem cell transplantation (HSCT) [2].

Cyclic neutropenia. Cyclic neutropenia is an autosomal dominant disorder characterized by regular oscillations in the number of peripheral blood neutrophils, with nadirs often below 200/µl and approximately 21-day periodicity [3,4]. During nadirs, patients may suffer from malaise, fever, oral ulcers, and lymphadenopathy. Severity ranges from asymptomatic to life-threatening, including colitis with Clostridial or gram negative sepsis [3,5], but myelodysplastic syndrome and leukemia have not been reported [6].

Both sporadic and autosomal dominant cyclic neutropenia derive from mutations in the ELA2 gene encoding neutrophil elastase [4,7]. The diagnosis of cyclic neutropenia is generally established by monitoring neutrophil counts three times weekly for 6–8 weeks, and is confirmed by sequencing of the ELA2 gene. Management includes symptomatic therapy for periodic fever and mucositis, antibiotics for infection (including anaerobic coverage for abdominal pain), and G-CSF for symptomatic patients with ANCs frequently below 500/µl [6,8].

Severe congenital neutropenia and Kostmann disease. Severe congenital neutropenia (SCN) was first described by Kostmann [9] as an autosomal recessive disorder in an isolated population in Sweden. Other forms of SCN have since been identified with sporadic occurrence or with autosomal recessive or dominant inheritance [6,10–12]. Although the nomenclature is still in flux, we suggest that the term SCN refer to the entire disorder and that Kostmann disease refer to the autosomal recessive subtype (discussed below) [13].

SCN is characterized by ANCs consistently below 200/µl, with recurrent, severe infections developing in the first months of life. Bone marrow examination characteristically shows a myeloid “maturation arrest” at the myelocyte stage of development [14]. Prior to the era of G-CSF therapy, most patients died in the first 2 years of life [6].

Mutations in the ELA2 gene are responsible for 60% of SCN cases (98/164; Severe Chronic Neutropenia International Registry, unpublished work), whether sporadic or autosomal dominant [7,11,15,16]. The bone marrow of SCN patients shows accelerated apoptosis of neutrophil precursors [17]. Expression of mutant neutrophil elastase may induce apoptosis through aberrant subcellular targeting of the protein or induction of a strong unfolded protein response [4,18,19].

Additional, rare cases of autosomal dominant SCN arise from mutations in genes—GFI1, PRDM5, and PFAPA5—mediating transcriptional repression of myeloid genes, including ELA2 [20–22]. A inherited mutation in the G-CSF receptor gene has also been reported in SCN [4,23], although acquired mutations are more...

1Division of Pediatric Hematology/Oncology, Department of Pediatrics, C.S. Mott Children’s Hospital, University of Michigan, Ann Arbor, Michigan; 2Departments of Pediatrics and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts

*Correspondence to: Peter E. Newburger, Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655. E-mail: peter.newburger@umassmed.edu

© 2007 Wiley-Liss, Inc.
DOI 10.1002/pbc.21282
common [17]. A shared molecular mechanism for neutropenia caused by these mutations may be the down-regulation of the transcription factor lymphoid enhancer-binding factor 1 (LEF-1) [11,24].

Mutations in most autosomal recessive SCN kindreds, including several originally studied by Kostmann, have been identified in the HAX1 gene [13], which encodes a mitochondrial protein. Therefore, the eponym “Kostmann disease” best fits this specific mutation and mode of inheritance.

More than 90% of SCN patients respond to G-CSF with increased neutrophil numbers and reduced infections, thus improving both survival and quality of life [6,8,25]. However, during long-term therapy with G-CSF, increasing proportions of SCN patients acquire mutations in the G-CSF receptor gene, then myelodysplasia often characterized by monosomy 7, progressing to myeloid leukemia [17,26–29]. Also, G-CSF responders retain a risk of death from sepsis despite seemingly adequate ANCs [29], perhaps due to functional defects in the neutrophils [30].

MULTIFACETED SYNDROMES ACCOMPANIED BY NEUTROGENIA

Neutropenia occurring within complex phenotypes has recently been clarified by the identification of underlying genetic defects and the resultant classification of the syndromes into disorders of ribosomal dysfunction, metabolism, vesicular transport, and immune function. These advances afford better understanding of the spectrum of disorders and provide new tools for genetic diagnosis.

Disorders of Ribosomal Dysfunction

Shwachman–Diamond syndrome (SDS) is a rare multi-organ disorder with autosomal recessive inheritance [31]. The clinical findings of neutropenia, pancreatic exocrine insufficiency, short stature, metaphyseal dysplasia suggest the diagnosis. Patients are at risk for development of progressive bone marrow failure and eventual conversion to myelodysplasia and acute myelogenous leukemia. Growth failure and short stature are usually noted during the first or second year of life and puberty is often delayed (Table I).

Pancreatic insufficiency is often present in early infancy manifested by steatorrhea, weight loss, and failure to thrive. Later in childhood pancreatic function often improves rendering the clinical diagnosis more challenging. Skeletal anomalies include metaphyseal dysostosis in about 50% of affected children, as well as rib-cage defects, clinodactyly, syndactyly, kyphosis, and osteopenia.

TABLE I. Classification of Congenital Neutropenia Syndromes

<table>
<thead>
<tr>
<th>Disorder (inheritance)</th>
<th>Blood findings</th>
<th>Genes (chromosome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disoders of granulopoiesis</td>
<td>Neutropenia</td>
<td>Unknown</td>
</tr>
<tr>
<td>Reticular dysgenesis (possible AR)</td>
<td>Lymphopenia</td>
<td>ELA2 (19p13.3)</td>
</tr>
<tr>
<td>Cyclic neutropenia (AD)</td>
<td>Periodic neutropenia</td>
<td>GFI1 (1p21)</td>
</tr>
<tr>
<td>Severe congenital neutropenia (AD, AR)</td>
<td>Periodic monocyctosis</td>
<td>GCSFR (1p35-p34.3)</td>
</tr>
<tr>
<td></td>
<td>Periodic changes in platelet and reticulocyte counts (within normal range)</td>
<td>PFAAP5 (13q12-q13)</td>
</tr>
<tr>
<td>Variant SCN3: Kostmann disease (AR)</td>
<td>Neutropenia</td>
<td>FRMD5 (4q25-q26)</td>
</tr>
<tr>
<td>Disorders of ribosomal dysfunction</td>
<td>MDS/AML</td>
<td>HAX1 (1q21.3)</td>
</tr>
<tr>
<td>Shwachman-diamond (AR)</td>
<td>Neutropenia</td>
<td>SBDS (7q11)</td>
</tr>
<tr>
<td>Dyskeratosis congenital (XLR, AD, AR)</td>
<td>Aplastic Anemia</td>
<td>DKC (xq28)</td>
</tr>
<tr>
<td></td>
<td>MDS/AML</td>
<td>TERC (3q21-q28)</td>
</tr>
<tr>
<td></td>
<td>Pancytopenia</td>
<td>TERT(5p15.33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Others</td>
</tr>
<tr>
<td>Disorders of metabolism</td>
<td>Neutropenia</td>
<td>TAZ1 (Xq28)</td>
</tr>
<tr>
<td>Barth syndrome (XLR)</td>
<td>Neutropenia</td>
<td>GFI1 (1q21)</td>
</tr>
<tr>
<td>Glycogen storage disease, Type 1b (AR)</td>
<td>Neutropenia</td>
<td>Rab27a (15q21)</td>
</tr>
<tr>
<td>Pearson’s syndrome (MT)</td>
<td>Neutropenia</td>
<td>MAPB1 (1q41)</td>
</tr>
<tr>
<td></td>
<td>Pancytopenia</td>
<td>MAPB1 (1q41)</td>
</tr>
<tr>
<td>Disorders of vesicular transport</td>
<td>Neutropenia</td>
<td>LYST (CHS1)</td>
</tr>
<tr>
<td>Chédiak–Higashi syndrome (AR)</td>
<td></td>
<td>(1p12,1-q12,2)</td>
</tr>
<tr>
<td>Cohen syndrome (AR)</td>
<td></td>
<td>COH1 (8q22-q23)</td>
</tr>
<tr>
<td>Griscelli syndrome, Type II (AR)</td>
<td></td>
<td>Rab27a (15q21)</td>
</tr>
<tr>
<td>Hermansky–Pudlak syndrome, Type II (AR)</td>
<td>Neutropenia</td>
<td>AP3P1 (5q14.1)</td>
</tr>
<tr>
<td>p14 deficiency (probable AR)</td>
<td>Neutropenia</td>
<td>MAPB1 (1q21)</td>
</tr>
<tr>
<td></td>
<td>Decreased B and T cells</td>
<td></td>
</tr>
</tbody>
</table>

Pediatr Blood Cancer DOI 10.1002/pbc
Neutropenia is the most common hematological manifestation of SDS but anemia and thrombocytopenia may occur. ANC falls below 1,000/µl in approximately two-thirds of patients, and the neutropenia may be intermittent. Associated chemotactic defects may contribute to gingivitis or more serious pyogenic infections. Bone marrow studies may show myeloid hypoplasia but are non-diagnostic.

Around 90% of patients who meet the clinical criteria for SDS harbor mutations in the SBDS gene [32,33]. Studies in yeast indicate that protein may serve a function in tRNA maturation, suggesting that SDS may share with other bone marrow failure syndromes some common pathogenesis in ribosomal dysfunction.

Treatment includes pancreatic enzyme replacement. Administration of G-CSF increases the ANC to the normal range but should only be employed in patients with persistently severe neutropenia accompanied by recurrent infections. Marrow cytogenetics abnormalities, particularly i(7q), may precede transition to myelodysplasia and leukemia. Currently there are insufficient studies to document a beneficial role for HSCT.

Diskeratosis congenita (DC) consists of a triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia [34,35]. Other common abnormalities include epiphora, developmental delay, pulmonary disease, short stature, esophageal webs, dental carries, tooth loss, and hair loss. Skin findings include macular or reticular hyperpigmentation and macular hypopigmentation.

Pancytopenia is the hematological hallmark of DC, with a mean age of onset at 10 years; but more than 90% of patients develop at least a single cytopenia by age three. Approximately 50% of patients develop aplastic anemia. Often aplastic anemia precedes the onset of abnormal skin, dystrophic nails, or leukoplakia.

Genetic defects have been identified in about 60% of DC patients, of whom the large majority have the X-linked form, caused by mutations in the DKC1 gene encoding the nucleolar protein dyskerin, resulting in a defect in ribosomal function. X-linked recessive disease is usually more severe, with an earlier clinical onset. About 10% of patients have autosomal dominant disease, which is associated with mutations in the telomerase components TERC [35,36] or TERT [37]. Ribosomal function might affect clinical severity in the context of telomerase dysfunction [38].

About two-thirds of patients with DC die as a result of bone marrow failure. Almost 9% of patients develop cancer including Hodgkin’s disease and carcinomas [34,39]. The role of HSCT has not been defined by prospective clinical studies.

Disorders of Metabolism

Barth syndrome is an X-linked recessive disease caused by mutations in the tafazzin gene [40]. It is characterized by cardiomyopathy, skeletal muscle weakness, neutropenia, and growth retardation. The ANC in Barth syndrome ranges from 500/µl to 1,500/µl. There is wide variation in clinical presentation ranging from severe debilitating disease to nearly asymptomatic cases. The characteristic symptoms are not consistently present in every patient and the clinical situation may change with age. The most serious finding is cardiomyopathy presenting as biventricular dilatation or left ventricular dysfunction (Table 1).

Patients have reduced concentrations and altered composition of cardiolipin, a mitochondrial phospholipid; tafazzin defects affect acyl remodeling of cardiolipin, leading to changes in mitochondrial architecture and function [41]. At present the mechanism of the neutropenia is not known [42].

Glycogen storage disease type 1b (GSD1b) is an inborn disorder of metabolism caused by inherited defects of the glucose-6-phosphatase complex [43], which has roles in both glycogenolysis and gluconeogenesis. Clinical features include hypoglycemia, hyperlactacidemia, hyperlipemia, and hyperurecemia, with hepatomegaly, growth retardation, osteopenia, and kidney enlargement.

Neutropenia and neutrophil dysfunction are hallmarks of GSD1b. Patients are susceptible to recurrent bacterial infections, aphthous ulcers, and inflammatory bowel disease. Often the ANC falls below 500/µl; both myeloid hyper- and hypocellularity have been reported in bone marrows [44]. Neutropenia arises from a striking tendency of the cells to undergo apoptosis in the circulation. Treatment with G-CSF reduces the incidence of infection.

Pearson’s syndrome. Large deletions in mitochondrial DNA, whose integrity depends on a specific DNA polymerase, are the hallmark of Pearson’s syndrome, a rare and fatal congenital disorder involving the hematopoietic system, exocrine pancreas, liver, and kidneys [45]. Onset occurs in infancy with macrocytic anemia often accompanied by neutropenia and/or thrombocytopenia. The bone marrow shows normal cellularity but striking abnormalities include vacuolization of erythroid and myeloid precursors, hemosiderosis, and ringed sideroblasts. The mitochondrial defect likely leads to impaired hematopoiesis through activation of caspases and accelerated apoptosis [46].

Disorders of Vesicular Transport

This constellation of autosomal recessive disorders combine neutropenia with partial albinism and other features, all derived from defects in formation or trafficking of lysosome-related organelles [47] (Table 1).

Chédiak-Higashi syndrome (CHS) is an autosomal recessive disorder characterized by increased susceptibility to infections arising from defective intracellular granule movement. The syndrome also includes partial oculocutaneous albinism and mild bleeding diathesis, progressive peripheral neuropathy, and predisposition to life-threatening hemophagocytic syndrome following viral infections, especially with Epstein–Barr virus [46]. CHS was initially characterized by the presence of giant cytoplasmic granules in neutrophils, monocytes and lymphocytes but it is now recognized as a disorder of subcellular vesicular dysfunction with increased fusion of cytoplasmic granules in all granule-bearing cells. Pigmentary dilution involving the hair, skin, and ocular fundi results from pathologic aggregation of melanosomes and is associated with failure of decussation of the optic and auditory nerves. Giant granules in the neutrophils interfere with transendothelial migration through narrow passages into tissue. Patients also have moderate neutropenia associated with ineffective myelopoiesis.

CHS derives from mutations in the lysosomal trafficking regulator gene LYST [48], which encodes a protein analogous to the yeast vacuolar sorting protein VPS15 and postulated to mediate protein–protein interaction and protein-membrane associations in vesicle transport [49].

HSCT is the only curative treatment for the hemophagocytic syndrome, but does not correct or prevent the peripheral neuropathy [50].
Cohen syndrome is an autosomal recessive condition that includes developmental delay, facial dysmorphism, pigmented retinopathy, and neutropenia [51]. The gene responsible for Cohen syndrome, COH1, shares homology to a yeast protein which functions in vesicular sorting and intracellular protein trafficking.

Griscelli syndrome (GS) is a rare autosomal recessive disorder characterized by pigmented dilution of the skin, a silver-gray sheen of the hair, the presence of large clumps of pigment in the hair shafts, and abnormal accumulation of end-stage melanosomes in melanocytes [52]. In addition to albinism, type II GS has a high risk of hemophagocytic syndrome [52,53]. Unlike CHS, peripheral blood granulocytes do not show giant granules. Patients often have mild neutropenia. GS II is caused by a mutation in RAB27a, which encodes a small GTPase protein involved in the function of the intracellular-regulated secretory pathway [47,54]. HSCT is the only curative treatment for the hemophagocytic syndrome.

Hermansky–Pudlak syndrome type II (HPSII) is an autosomal recessive disease that is caused by disruption of the adaptor protein-3 complex [55,56]. The adaptor protein (AP) complex plays a fundamental role in vesicle formation and in cargo selection in the vesicular trafficking system of the cell. Patients with HPSII present with mutations in the gene encoding for the beta sub-unit of the AP-3 complex [56]. Clinically the syndrome is characterized by ocucutaneous albinism and platelet defects due to absence of platelet dense bodies. Disruption of the AP-3 complex differentially affects vesicular trafficking in melanocytes, platelets, cytotoxic T lymphocytes, and natural killer cells [55]. Neutropenia, often severe, is associated with diminished amounts of neutrophil elastase.

p14 Deficiency is an autosomal recessive disorder leading to congenital neutropenia, with ANC's below 500/μl, partial albinism, short stature, and B-cell and cytotoxic T-cell deficiency [57]. Protein p14 is required for the proper biogenesis of endosomes and the subcellular relocation of mitogen-activated protein kinase signaling to late endosomes [47].

TABLE II. Classification of Neutropenia Found in Disorders of Immune Function

<table>
<thead>
<tr>
<th>Disorder (inheritance)</th>
<th>Blood</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartilage-hair hypoplasia (AR)</td>
<td>Neutropenia</td>
<td>RMRP (9p21-p12)</td>
</tr>
<tr>
<td></td>
<td>Lymphopenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macrocytic anemia</td>
<td></td>
</tr>
<tr>
<td>Hyper-IgM syndrome (XLR)</td>
<td>Neutropenia</td>
<td>CD40L (Xq26)</td>
</tr>
<tr>
<td></td>
<td>Pancytopenia</td>
<td></td>
</tr>
<tr>
<td>Common variable immunodeficiency (probable AR)</td>
<td>Neutropenia</td>
<td>TNFRSF13B (17p11.2)</td>
</tr>
<tr>
<td></td>
<td>Decreased IgG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decreased IgM</td>
<td></td>
</tr>
<tr>
<td>IgA deficiency (unknown)</td>
<td>Neutropenia</td>
<td>Unknown or TNFRSF13B (17p11.2)</td>
</tr>
<tr>
<td></td>
<td>Decreased IgA</td>
<td></td>
</tr>
<tr>
<td>X-linked agammaglobulinemia (XLR)</td>
<td>Neutropenia</td>
<td>BTK (Xq22)</td>
</tr>
<tr>
<td></td>
<td>Absent B cells</td>
<td></td>
</tr>
<tr>
<td>Schimke immuno-osseous dysplasia (probable AR)</td>
<td>Neutropenia</td>
<td>SMARCAL1 (2q34-q36)</td>
</tr>
<tr>
<td></td>
<td>Pancytopenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphopenia</td>
<td></td>
</tr>
<tr>
<td>Myelokathexis and WHIM syndrome (AD)</td>
<td>Neutropenia</td>
<td>CXCR4 (2q21)</td>
</tr>
<tr>
<td></td>
<td>Lymphopenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decreased IgG</td>
<td></td>
</tr>
<tr>
<td>Wiskott–Aldrich syndrome (XLR)</td>
<td>Neutropenia</td>
<td>WAS (Xp11.23–p22)</td>
</tr>
<tr>
<td></td>
<td>Lymphopenia</td>
<td></td>
</tr>
</tbody>
</table>

XLR, X-linked recessive; AD, autosomal dominant; AR, autosomal recessive; MDS/AML; myelodysplasia/acute myelogenous leukemia; MT, mitochondrial.

Pediatr Blood Cancer DOI 10.1002/pbc
postnatal growth retardation; proteinuria progressing to nephrosis and renal failure; lymphopenia, often associated with neutropenia and other cytopenias; and defective cellular immunity [64]. The disorder is caused by mutations in the swi/snf-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1 gene (SMARCAL1) [65]. The immunodeficiencies can be treated with HSCT [66]; neutropenia, seen in 40% of patients, responds to G-CSF therapy.

Myelokathexis and WHIM syndrome. Myelokathexis is a rare autosomal dominant disorder characterized by moderate to severe neutropenia accompanied by neutrophil hyperplasia in the bone marrow and striking degenerative changes in the neutrophils, including cytoplasmic vacuoles, prominent granules, and nuclear hypersegmentation with very thin filaments connecting pyknotic-appearing nuclear lobes [67]. Recurrent warts and hypergammaglobulinemia often accompany myelokathexis, hence the acronym warts, hypergammaglobulinemia, infections, and myelokathexis (WHIM). WHIM syndrome arises from a truncating mutation in the cytoplasmic tail domain of the gene encoding the chemokine receptor-4 (CXCR4), a G-protein-coupled receptor with the unique ligand stromal-derived factor I (SDF-1) [68]. Myeloid cells fail to be mobilized from the bone marrow, where they undergo partial apoptosis [69]. Marrow retention and neutropenia are partially corrected by G-CSF or GM-CSF therapy.

Wiskott–Aldrich syndrome. Very rare cases of neutropenia are associated with activating mutations in the gene encoding the Wiskott–Aldrich syndrome protein, resulting in an X-linked form of SCN. The patients also have defects of immunologic function, including reduction of lymphoid and natural killer cell numbers, reduced lymphocyte proliferation, and disturbed phagocytic function; but they have normal platelet counts [70]. The bone marrow shows trilineage dysplasia with markedly reduced granulopoiesis. The neutropenia responds to G-CSF therapy.

ACKNOWLEDGMENT

We thank Dr. Blanche Alter for the inspiration to write this review.

REFERENCES

Pediatr Blood Cancer DOI 10.1002/pbc
patients with congenital neutropenia. Experience of the French
Severe Chronic Neutropenia Study Group. Haematologica
2005;90:45–53.
29. Rosenberg PS, Alter BP, Bolyard AA, et al. The incidence of
leukemia and mortality from sepsis in patients with severe
congenital neutropenia receiving long-term G-CSF therapy. Blood
congenital neutropenia reverses neutropenia but does not correct
the underlying functional deficiency of the neutrophil in defending
Haematol 2002;118:701–713.
are associated with Shwachman-Diamond syndrome. Nat Genet
33. Shimamura A. Shwachman-Diamond syndrome. Semin Hematol
2006;43:178–188.
34. Dokal I. Dyserkeratosis congenita in all its forms. Br J Haematol
35. Vulliamy TJ, Marrone A, Knight SW, et al. Mutations in
dyserkeratosis congenita: Their impact on telomere length and
36. Marrone A, Walne A, Dokal I. Dyserkeratosis congenita: Telomerase,
transcriptase component of telomerase (TERT) in patients with
mutations affect accumulation of telomerase RNA and small nuclear RNA,
telomerase activity, and ribosomal RNA processing. Proc Natl
Acad Sci USA 2004;101:10756–10761.
39. Vlachos A, Lipton JM. Hematopoietic stem cell transplant for
Pediatric stem cell transplantation. Sudbury, MA: Jones and
40. Barth PG, Wanders RJ, Vreken P, et al. X-linked cardio-skeletal
myopathy and neutropenia (Barth syndrome) (MIM 302600). J
myopathy and neutropenia (Barth syndrome): An update. Am J
42. Kuijpers TW, Maianski NA, Tool AT, et al. Neutrophils in Barth
syndrome (BTHS) avidly bind annexin-V in the absence of
correlation in glycogen storage disease type 1b: A multicentre
44. Kuijpers TW, Maianski NA, Tool AT, et al. Apoptotic neutrophils in
the circulation of patients with glycogen storage disease type 1b
refractory sideroblastic anemia with vacuolization of marrow
precursors and exocrine pancreatic dysfunction. J Pediatr 1979;
95:976–984.
46. Borregaard N, Boxer LA. Disorders of neutrophil function. In:
Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Kauhsenky K,
Prchal JT, editors. Hematology, New York: McGraw-Hill Medical;
47. Dell’angelica EC. Bad signals jam organelle traffic. Nat Med
48. Barbosa MD, Barrat FJ, Tchernev VT, et al. Identification of
mutations in two major mRNA isoforms of the Chediak-Higashi
syndrome gene in human and mouse. Hum Mol Genet 1997;6:
1091–1098.
49. Spritz RA. Multi-organellar disorders of pigmentation: Tied up in
dysfunctions 20 years after allogeneic bone marrow transplantation
of Cohen syndrome following a large-scale genotype-phenotype
associating partial albinism and immunodeficiency. Am J Med
cause Griscelli syndrome associated with haemophagocytic
molecular defects in Rab27a, caused by RAB27A missense
mutations found in patients with Griscelli syndrome. J Biol Chem
2003;278:11386–11392.
in Hermansky-Pudlak type 2 syndrome. Blood 2006;107:4857–
4864.
deficiency in the AP3B1 gene causing Hermansky-Pudlak syndrome,
immunodeficiency syndrome caused by deficiency of the endo-
58. Hermanns P, Tran A, Munivez E, et al. RMRP mutations in
cartilage-hair hypoplasia. Am J Med Genet Part A 2006;140A:
2121–2130.
59. Cham B, Bonilla MA, Winkelstein J. Neutropenia associated with
primary immunodeficiency syndromes. Semin Hematol 2002;39:
107–112.
cause an autosomal recessive form of immunodeficiency with
hyper IgM. Proc Natl Acad Sci USA 2001;98:12614–12619.
62. Winkelstein JA, Marino MC, Ochs H, et al. The X-linked hyper-
IgM syndrome: Clinical and immunologic features of 79 patients.
63. Ogershok PR, Hogan MB, Welch JE, et al. Spectrum of illness in
pediatric common variable immunodeficiency. Ann Allergy Asthma
64. Clewning JM, Antalfy BC, Lucke T, et al. Schimke immuno-osseous
dysplasia: A clinicopathological correlation. J Med Genet 2007;44:
122–130.
remodelling protein SMARCA1 causes Schimke immuno-osseous
transplantation in a patient with Schimke immuno-osseous
67. Latger-Cannard V, Bensoussan D, Bordignon P. The WHIM
syndrome shows a peculiar dysgranulopoiesis: Myelokathexis. Br
with different genetic anomalies are accounted for by impaired
2457.
69. Christopher MJ, Link DC. Regulation of neutrophil homeostasis.
70. Ancliff PJ, Blundell MP, Cory GO, et al. Two novel activating
mutations in the Wiskott-Aldrich syndrome protein result in