Objectives for Module 5

Knowledge
- List 4 common problems that patients might experience during TIAs produced by ischemia in vertebral-basilar territory.
- List 5 important signs and symptoms that may be seen after infarction of the dorsolateral region of the rostral medulla, and relate each to damage in a specific neuroanatomic structure.
- Describe the problem with memory that is commonly produced by bilateral PCA occlusion.

Clinical Applications and Reasoning
- Explain why bilateral signs can be produced by a unilateral lesion in the brainstem.
- Explain how (and where) a ‘pure motor stroke’ can be produced by occlusion of a vertebral-basilar branch.
- Compare and contrast the patterns of clinical findings seen after bilateral occlusion of all cortical PCA branches vs. occlusion of only those branches supplying the primary visual cortex.
- Explain why macular sparing is a variable finding following PCA branch occlusion.

Clinical Applications to Patient Education
- Develop points that you could use in explaining to a patient how they might personally experience a TIA produced by temporary occlusion of vertebral-basilar branches.

Transient Ischemic Attacks involving vertebral-basilar vessels

TIAs in the vertebral-basilar territory can produce a number of different problems, reflecting the many functions of the brainstem. Because the basilar artery is a single midline vessel whose branches supply both sides of the brainstem, TIAs can produce bilateral as well as unilateral motor or sensory findings.

The most common signs and symptoms reported in brainstem TIAs are dizziness or vertigo and nausea. The frequency of these complaints most likely reflects the presence of structures related to the vestibular system throughout much of the brainstem. However, episodes of dizziness or nausea are not uniquely associated with TIAs (nor is every TIA producing dizziness caused by blockage of vertebral-basilar vessels). Accurate diagnosis and localization of vertebral-basilar territory TIAs requires other associated brainstem findings in addition to ‘dizziness.’
Expert Note: This patient had a brainstem TIA, most likely produced by a cardiac embolus that initially lodged in one vertebral artery and then broke up. The TIA lasted approximately an hour before the deficits began to clear. Like many patients with brainstem ischemia, he experienced problems related to malfunction of the vestibular system. Vertigo can have many causes, but the combination of vertigo and dysarthria suggests brainstem or cerebellar involvement.

Question: Why does atrial fibrillation increase the risk of TIA or stroke? (Answer: ineffective contraction of the atrial muscle increases the likelihood that thrombus will form in the atrium—a potential source of emboli.)

Signs or symptoms that are often characteristic of brainstem TIAs include:

- Unilateral or bilateral* weakness, clumsiness or paralysis
- Limb ataxia or coarse tremor, staggering or veering when attempting walking [cerebellar signs]
- Vertigo or dizziness [not by itself but in combination with other brainstem findings]
- Unilateral or bilateral* numbness or paresthesias (burning, tingling etc.) or loss of sensation
- Dysarthria
- Visual field loss or blindness or diplopia
- Nystagmus (the patient may describe, “things jumping around when I try to look at them.”

* Since the basilar artery supplies both sides of the brainstem, its occlusion can affect motor or sensory long tracts bilaterally.
Common Strokes involving the vertebral-basilar vessels or branches

<table>
<thead>
<tr>
<th>Blocked Vessel or Branch</th>
<th>PATTERNS OF POSSIBLE DEFICITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>One vertebral artery in the rostral medulla; in some cases, blockage of the PICA branch</td>
<td>Loss of pain sensation on the ipsilateral side of face, but contralateral trunk and limbs; hoarseness, impaired swallowing, and ipsilateral vocal cord paralysis; ipsilateral ataxia and Horner’s syndrome; vertigo, nausea, and vomiting (Wallenberg’s syndrome)</td>
</tr>
<tr>
<td>Penetrating paramedian basilar branch in the pons</td>
<td>Contralateral hemiplegia; involvement of face depends on location of the infarction (pure motor stroke)</td>
</tr>
<tr>
<td>Basilar occlusion affecting the rostral pons bilaterally</td>
<td>Bilateral complete paralysis rendering patient motionless and mute although alert, aware, and capable of perceiving sensory stimuli. Vertical components of 3rd and 4th nerve function may be spared (locked-in syndrome)</td>
</tr>
<tr>
<td>Penetrating PCA branch supplying thalamus</td>
<td>Pure sensory loss involving face, arm, trunk, and leg; initially hemianesthesia but later may develop a thalamic pain syndrome with painful dysesthesias in affected parts</td>
</tr>
<tr>
<td>Unilateral cortical branches of PCA supplying the occipital lobe</td>
<td>Contralateral homonymous hemianopsia with or without macular sparing depending on location of PCA-MCA border zone</td>
</tr>
<tr>
<td>Bilateral occlusion of all PCA cortical branches distal to the thalamic penetrators</td>
<td>Inability to form and/or consolidate new memories; cortical blindness, which may be accompanied in the acute stage by denial that they have any problem seeing</td>
</tr>
</tbody>
</table>

Expert Note: The patient has infarcted the dorsolateral region of the rostral medulla on the right side. This is the most commonly occurring ischemic brainstem stroke. The combination of signs and symptoms that he shows is often referred to as Wallenberg’s syndrome. It used to be thought that this syndrome was only produced by posterior inferior cerebellar artery occlusion; however more recent studies suggest that in many of these patients it is blockage of the vertebral artery itself that is responsible.

The hoarse voice, difficulty in swallowing, left palatal deviation, and absent right gag reflex all suggest damage to the 9th and 10th nerves (or nucleus ambiguus) on the right. The nystagmus (together with the vertigo, severe nausea and vomiting that patients like this often

Case Summary

On recent examination, this patient had a hoarse voice, and coughed every time he attempted to swallow. His palate deviated to the left, and the gag reflex was absent on the right. Attempts to follow the examiner’s finger with his eyes brought out nystagmus, especially when he looked to the left. The patient veered to the right when attempting to walk, and the finger-to-nose and heel-to-shin tests demonstrated dysmetria of arm and leg movements on the right. He had lost pain and temperature sensation on the right side of the forehead and mouth, but on the left leg, trunk, and arm. He had a partial Horner’s syndrome (his right pupil was smaller than the left but was reactive, and his right lid drooped slightly).
experience) is produced by damage to the vestibular nuclei or vestibular connections with the cerebellum. Problems with right limb coordination suggest involvement of the inferior cerebellar peduncle or cerebellum itself, both on the right side.

The loss of pain and temperature sensation on the right side of the face is caused by interruption of the descending tract of the trigeminal, which is uncrossed. The spinothalamic tract, which runs close to the descending tract, has already crossed in the spinal cord so it carries information about pain and temperature in the left (opposite) side of the body. Hint: Brainstem lesions typically produce cranial nerve signs ipsilateral to the lesion but sensory deficits in the trunk and limbs contralateral to the lesion because the two major somatosensory pathways for the body (the spinothalamic tract and medial lemniscus) cross at or below the caudal medulla.

When a Horner’s syndrome (ptosis, miosis, anhydrosis) is produced by a lateral medullary lesion, the cause is interruption of descending fibers (from hypothalamus or reticular formation) traveling in lateral parts of the reticular formation that will synapse with the preganglionic sympathetic neurons of the intermediolateral column in the high thoracic spinal cord. Hint: No matter where (CNS or PNS) the sympathetic system is interrupted to produce a Horner’s syndrome, the lesion is always on the same side as the abnormal findings.

<table>
<thead>
<tr>
<th>Occlusion of a perforating branch of the basilar artery in the pons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Summary</td>
</tr>
<tr>
<td>On examination, this patient had a pure motor hemiplegia that involved the arm and leg on one side of the body. Reflexes in the paralyzed arm and leg were exaggerated, and the plantar response was dorsiflexor. There were no accompanying abnormal sensory or visual findings, and no cognitive deficits such as anhaasia or neglect.</td>
</tr>
</tbody>
</table>

Expert Note: This patient has a lacunar stroke in the base of the pons, caused by occlusion of a small medial penetrating branch of the basilar artery. The damage interrupts the corticospinal tract, which is located in the base of the pons, producing contralateral upper motor neuron paralysis of the arm and leg with exaggerated reflexes and an abnormal plantar response (sign of Babinski). There is no cortical or thalamic damage so no cognitive or visual deficits are present, and the somatosensory system is also spared since these pathways run in the more dorsal parts of the pons. The same clinical findings may be seen after a lacunar stroke in the internal capsule caused by occlusion of a lenticulostriate artery. However, in pontine lesions the face is usually spared because the corticobulbar fibers have separated from the corticospinal tract at this level, and are located much farther dorsal. By contrast, the corticobulbar and corticospinal tracts run close to each other in the internal capsule and both could be affected by a relatively small lesion.

If the pontine lesion is less severe, producing a milder motor problem (a hemiparesis instead of hemiplegia), there may be ataxia of the weakened limbs. Ataxia is not seen if there is complete limb paralysis — to detect the presence of ataxia (incoordination of voluntary limb movements) it is essential that the patient be able to move the limb! The ataxia, indicating a problem with cerebellar function, presumably reflects damage to the pontine nuclei (griseum pontis) that project axons to the cerebellum via the middle cerebellar peduncle.
Occlusion of the basilar artery in the rostral pons

Case Summary

When seen on work rounds, this patient showed no spontaneous movement of her face, tongue, neck, trunk or limbs. She was intubated to protect her airway. She was believed to be totally unresponsive until a medical student discovered that she could move her eyes vertically on command. Using a code of up for "yes" and down for "no," the student demonstrated that the patient knew what hospital she was in, how long she had been there, her diagnosis, the names of many of her doctors and nurses, and remembered many day-to-day events of her hospital stay. Although she had no other voluntary movements except vertical eye movements and the ability to lift her eyelids, she had preserved somatic sensation, vision, hearing, and taste.

Expert Note: In this patient, occlusion of the basilar artery just distal to the superior cerebellar arteries has produced infarction of the base of the rostral pons bilaterally. Interruption of the corticobulbar and corticospinal tracts caused the complete paralysis of all voluntary movements except certain eye movements. The patient's neurologic deficit is referred to as the locked-in state.

Voluntary **horizontal** eye movements are impossible because they require intact projections from the frontal lobe (via superior colliculus) to structures in the caudal pons. **Vertical** eye movements are spared since the entire pathway for voluntary vertical eye movements is contained in midbrain (the location of brainstem vertical gaze centers and the 3rd and 4th nuclei and nerves) and forebrain, both of which spared since they are located rostral to the lesion.

The reticular formation and other structures located in the midbrain continue to get adequate blood flow, accounting for the patient's being awake, alert, aware of herself and her surroundings, and capable of perceiving sensory stimuli. One likely explanation is that the size and arrangement of vessels in her Circle of Willis makes it possible for enough blood to flow **from** the internal carotid arteries through the posterior communicating and **into** the posterior cerebral arteries to supply these areas.

Occlusion of a penetrating PCA branch to the thalamus

Case Summary

When seen in clinic, this patient could not feel any gentle stimulus over the entire right side including face, neck, body, and limbs. However, he was extremely apprehensive about sensory testing since any sufficiently intense right-sided stimulus (even shaking hands) produced an overwhelming wave of unbearable, surrealistic pain that lasted for several minutes. Cold stimulation was particularly effective in producing such pain, and he was terrified of contact with any moderately cold object such as a glass of cold water. Left-sided sensations were normal.

Expert Note: This patient has a small area of infarction in his left thalamus that involves the somatosensory nuclei (ventral posterolateral and ventral posteromedial) where spinal cord and brainstem sensory pathways terminate. Therefore all modalities of somatic sensation are impaired on his right side. His distressing over-response to cold stimuli is an example of a thalamic pain syndrome. Presumably it reflects abnormal overactivity somewhere in the
system for processing painful stimuli that is secondary to thalamic injury, but the details are not known.

Spontaneous pain syndromes can result from lesions in other parts of the CNS, and by themselves do not localize the lesion to the thalamus. In this patient other neighboring parts of the thalamus and its fiber connections were spared. The various thalamic nuclei provide critical inputs to specific regions of cortex, and lacunar strokes involving the thalamus may produce other deficits ranging from extrapyramidal movement disorders to aphasias.

Occlusion of PCA cortical branches to the left occipital lobe

Case Summary

This patient had no other neurologic deficit except a complete right homonymous hemianopsia, which means that when his eyes were stationary he could not see to the right side with either eye. He was very aware of his visual loss, and compensated by moving his eyes in order to bring objects in his blind field into view. By this means, he was able to see objects on both sides of pictures and read across a whole page of written text without hesitation. Pupillary light reflexes were normal.

Expert Note: In this patient the medial aspect of the *left* occipital lobe is infarcted. The patient realizes that he can’t see to his right, and does not neglect objects even if they are in his blind regions. By contrast, patients with a larger lesion in the *right* occipital lobe that involves neighboring parts of the right parietal and temporal lobes may lose the ‘concept’ of the left side of themselves or of their world. Recall that central (macular) parts of the visual fields are mapped onto both the more posterior parts of the medial occipital lobe and its posterior lateral aspect as well. Thus in different patients the macular region may be in either PCA territory or the border zone between MCA and PCA cortical branches. Although it is more common for the macula to be in the border zone and therefore largely spared in a PCA infarct, that was not the case for this patient. Because neither the retina, the optic tract, or the upper brainstem is supplied by cortical branches of PCA, the pupillary light reflexes are normal.

Temporary blockage of most cortical branches of PCA bilaterally

Case Summary

This patient had heart valve surgery 6 years ago, and has a mechanical mitral valve. One day at work he abruptly collapsed, unconscious. By the time EMTs brought him to the hospital, he had regained consciousness. In the emergency department he was found to have "tunnel vision," i.e., he was blind except in the central parts of his visual fields. In addition, he could not remember new events or new facts for more than 40 to 50 seconds and was therefore unable to learn any doctor’s name or even to appreciate that he was in a hospital. By the following afternoon, the blindness and inability to memorize new information began to gradually clear up. Yesterday on rounds, his one remaining neurologic problem was total amnesia for a period of about 6 weeks prior to this incident.

Expert Note: It is likely that a piece of thrombus on the surface of the mechanical heart valve broke off. The resulting embolus probably passed readily through the large diameter
basilar artery, but was arrested by the narrowing at its upper bifurcation. The patient’s collapse and temporary unconsciousness were caused by the sudden interruption of input from rostral parts of the brainstem reticular formation to the cerebral cortex. Function was restored because the embolus obstructing the upper basilar bifurcation quickly broke up. However, several of its pieces entered both PCAs and briefly blocked cortical branches bilaterally before completely disintegrating. The nearly complete loss of vision reflects malfunction of much of the primary visual cortex produced by ischemia. Although these regions temporarily ceased to function correctly, their neurons did not die since the patient later regained normal visual fields. The patient’s central vision was spared, suggesting that in his brain the macular representation must lie in the MCA-PCA border zone, which never became ischemic because the distal cortical branches of MCA provided it with a sufficient blood supply.

Cortical branches of PCA to the inferior medial temporal lobes also supply much of the hippocampal formation and its major output pathway, the fornix. These structures are important in specific aspects of memory, as this patient illustrates. The patient was able to converse with his physicians throughout this episode, so he remembered how to use language. Furthermore, he was able to remember new people and factual information very briefly. However, he was incapable of retaining or retrieving this new information after more than a minute elapsed. This problem is sometimes described as a Korsakoff-type memory defect. The patient soon recovered normal memory function, but now has amnesia, a “hole in his memory,” for events that occurred in the 3-4 weeks immediately prior to his stroke.

In this patient, brief ischemia involving the hippocampal formation and its connections permanently disrupted the consolidation of memories involving events just prior to the stroke. This suggests that the process of converting a block of temporally-related memories from a transient to a more permanent form occurs slowly, over a period of weeks. In this patient the amnesia is the result of bilateral hippocampal damage, but even unilateral PCA strokes can produce amnesia, especially if the stroke is in the left hemisphere.

What about the spinal cord – isn’t it also nourished by vertebral branches?

Vascular disease in the spinal cord is uncommon. Unlike arteries in the brain, spinal arteries are not particularly susceptible to atherosclerosis or embolization. However, infarction of the spinal cord can occur after surgery that involves aortic replacement, or in cases where a dissecting aneurysm of the aorta blocks radicular vessels. The collateral arteries that supply the spinal cord vary somewhat in size, and a catastrophic drop in blood pressure may result in ischemia in vulnerable segments (those at mid-thoracic levels are especially at risk). This is the spinal equivalent of a border zone infarct in the cerebral hemispheres.

When the anterior spinal artery is blocked, there is bilateral paralysis and a deficit in pain sensation below the level of the lesion. However, joint position and vibratory sensations are spared since the posterior columns and neighboring white matter are supplied by the posterior spinal arteries.