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ABSTRACT

Ebolavirus, a deadly hemorrhagic fever virus, was thought to enter cells through
endolysosomes harboring its glycoprotein receptor, Niemann-Pick C1. However,
an alternate model was recently proposed in which ebolavirus enters through a
later NPC1-negative endosome that contains two pore Ca®* channel 2 (TPC2), a
newly identified ebolavirus entry factor. Here, using live cell imaging we provide
evidence that in contrast to the new model, ebolavirus enters cells through

endolysosomes that contain both NPC1 and TPC2.

MAIN TEXT

As evidenced by the recent crisis in West Africa, ebolavirus (EBOV) can cause
widespread disease and death in human populations. Entry of EBOV into cells,
which is mediated by its sole glycoprotein (GP), is a target for therapeutic
intervention (1, 2). EBOV entry is unusual in that it requires proteolytic-priming of
GP followed by engagement of Niemann-Pick C1 (NPC1), a thirteen-pass
membrane protein that aids cholesterol transport from endolysosomes (LE/Lys).
Since the realization that NPC1 functions as an EBOV receptor (3-6), models
have invoked entry through NPC1* LE/Lys (7-9). However, a recent study
proposed a very different model: passage through NPC1" LE/Lys followed by
traffic to and entry in endosomes that lack NPC1 but contain two pore Ca?*
channel 2 (TPC2), a recently emerged EBOV entry factor (10, 11). The recent
studies for (9) and against (10) entry in NPC1" LE/Lys were based on static

microscopic assessment of colocalization of virus-like particles (VLPs) with
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endosomal markers. We found (9) that VLPs bearing EBOV GP enter the
cytoplasm shortly after colocalization with NPC1" LE/Lys, assessed at fixed
timed intervals in parallel samples analyzing VLP colocalization with NPC1 and
VLP entry, which was based on delivery of VP40-3-lactamase into the cytoplasm.
A limitation of the static colocalization analyses is that the observer cannot tell if
the colocalized particle goes on to fuse. Here, to circumvent that limitation, we
used live cell microscopy to determine whether EBOV entry does or does not

occur in NPC1* LE/Lys.

For these experiments we used Moloney Murine Leukemia Virus (MoMLV)
particles (Fig. 1) containing gag-mKO (red) in their core and the far-red probe
1,1’-dioctadecyl-3,3,3’,3'-tetramethylindodicarbocyanine-4-
chlorobenzenesulfonate salt (DiD) incorporated into the pseudovirus membrane
during particle production, as described previously (12, 13). We used retroviral
pseudoparticles since we previously showed that retroviral particles bearing
EBQV GP, either full-length or pre-primed (cleaved in vitro to the ~20 kDa form),
enter cells with the same kinetics as filamentous EBOV VLPs (9). We prepared
particles with a biosynthetically pre-primed (21 kDa) version of EBOV GP since,
as seen previously (14), higher entry levels were seen with particles bearing
primed vs. full length GP (Fig. 2e). In practice, three types of particles are
produced: ones with both gag-mKO and DiD, ones with only gag-mKO, and ones
with only DiD (Fig. 1a, b). When a double-labeled (mKO/DiD) particle fuses, the

lipid dye (blue) diffuses into the endosome membrane and the core (red) enters
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the cytoplasm (Fig. 1c¢). For the studies presented we only analyzed double-

labeled particles.

We analyzed pseudovirus particles with pre-primed (21 kDa) EBOV GP entering
live cells expressing either NPC1-GFP (Fig. 2) or GFP-Rab5 (Fig. 3) using
spinning disk confocal microscopy. In brief, pseudovirus particles were spinfected
onto the surface of BSC-1 cells at 4°C after which the dishes were placed on a
spinning disk confocal microscope stage maintained at 37°C. After 5 to 15 min,
the medium was replaced with 37°C medium and images were captured at
intervals of 5 or 10 frames/sec. Only double-labeled pseudoparticles were
monitored, as separation of the content (gag-mKO) from the membrane (DiD)
gives the clearest measure of a fusion event (Fig. 1c) (12, 13). In experiments
represented in Fig. 2, the cells were transfected to express NPC1-GFP. The
particle tracked in Fig. 2a (Movie 1) fused 5.5 min after associating with an
NPC1" LE/Lys (green). In this case, fusion was evidenced by an increase of the
DiD signal (due to dequenching upon diffusion into the endosome membrane)
and loss of the gag-mKO signal that had been associated with the DiD (blue) and
NPC1-GFP (green) signals. The particle tracked in Fig. 2b (Movie 2) associated
with an NPC1" LE/Lys (green) in two steps, and fused 2 min after the second
step. In this case the gag-mKO signal was lost, but the DiD signal remained the
same, as seen upon fusion of MoOMLV pseudovirions bearing HIV Env in
endosomes (13). This is because the starting concentration of DiD in this particle

was not high enough to observe a dequenching signal (12, 13).



(19)
=
&
O]
(1)
——
U2)
(0)
o
——
o
g
\9}
2]
>
(=
=
O
(1)
——
(O
(19)
O
9}
<(

Journal of Virology

Journal of Virology

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

All observed EBOV GP-mediated fusion events (43/43; 100%; traces similar to
those in Fig. 2a or Fig. 2b) occurred in endosomes tagged with NPC1-GFP (Fig.
2c). Fusion did not occur if target cells were pretreated with bafilomycin or E64d,
chemical inhibitors that nullify, respectively, the low endosomal pH and cathepsin
activities needed for EBOV fusion (14, 15) (Fig. 2d). We have previously shown
that these treatments do not block trafficking of EBOV GP particles to NPC1*
LE/Lys (9). Moreover, if the particles contained the 1544A EBOV GP fusion loop
mutant (16), the number of fusion events was strongly reduced (Fig. 2d), in line
with reduced infectivity of the same particles (Fig. 2e). For WT (21 kDa) EBOV
GP pseudoparticles, the dwell times between stable association with an NPC1-
GFP-tagged endosome and fusion ranged from 3-10 min, with shorter dwell

times seen for traces exemplified in Fig. 2b.

21 kDa EBOV GP pseudoparticles that fused did so after passage through GFP-
Rab5-tagged endosomes (Fig. 3a and Movies 3 and 4; Movie 4 is the
continuation of Movie 3). In Movie 3 the pseudovirus associates with a GFP-
Rab5 endosome at ~ 3 min. By the end of Movie 3, the endosome has lost most
of its GFP-Rab5 signifying its maturation into a later endosome. Continuation of
imaging (Movie 4) reveals that the particle fuses much later, at ~ 54 min total
timing; based on data presented in Fig. 2, this fusion presumably occurs in a
NPC1" LE/Lys. These findings are consistent with previous observations on the

route of EBOV entry (9, 17). And, in contrast to particles bearing EBOV GP,
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which only fused in NPC1-GFP-tagged endosomes (Fig. 2 and Movies 1 and 2),
similarly prepared particles bearing VSV-G fused primarily in GFP-Rab5-tagged

endosomes (Fig. 3b and Movie 5), consistent with prior results (18, 19).

Our results provide strong evidence that EBOV GP-mediated fusion does,
indeed, occur in NPC1" LE/Lys (3, 4, 6-8, 20). After internalization, EBOV passes
through a Rab5" endosome, which then loses Rab5 as it matures into an NPC1*
LE/Lys. In this compartment, primed GP binds to NPC1 (3, 4, 6), and fusion
occurs from within an NPC1" LE/Lys. Our findings are not consistent with the
recently proposed model in which EBOV enters from a later putative endosome
that lacks NPC1 but contains TPC2 (10, 11). Given the high colocalization of
TPC2 with Lamp2 (21) and of Lamp2 with NPC1 (9), we predicted that most
NPC1"* LE/Lys contain TPC2 (and vice versa). Indeed, NPC1-GFP and TPC2-
mCherry (22) are virtually completely colocalized (Fig. 4a, b) and remain together

throughout live cell imaging (Movie 6).

Although TPC2 is required for EBOV entry (10), our results showing (a) that all
EBOV GP fusion events occur in NPC1" LE/Lys (Fig. 2c) and (b) that virtually all
NPC1" LE/Lys contain TPC2 (Figs. 4a,b; Movie 6) argue against the recently
proposed model, which requires dissociation of primed GP from NPC1 and
subsequent passage of EBOV particles out of the NPC1 compartment followed
by transport to a later NPC1/TPC2* endosome (10, 11). Instead, our results

argue that EBOV GP directs fusion in a LE/Lys that contains both NPC1 and
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TPC2 (Fig. 4c). Hence, rather than playing a direct role in EBOV fusion, a more
likely possibility is that TPC2 is required for LE/Lys maturation (23), which is
clearly required for EBOV entry (3, 24), and which involves Ca*" dependent
endosome fusion (25-27). Proper maturation of NPC1*/TPC2" LE/Lys is likely
needed to provide the environmental cue(s) that trigger(s), and the physical

conditions (e.g., lipid composition) that support, EBOV fusion (9).

SPECIAL METHODS

Production of DiD and mKO-labeled MLV Pseudovirions: Plasmids (0.5 pug 21
kDa GP (full length GP for Fig. 2e); 2 yg MLV-gag-mKO; 1 ug pHIT60; 3 ug pFB-
luc (Agilent); 2.5 ug pCAGGS) were diluted to 300 pl in phenol red free DMEM
without serum or additives. For 21 kDa EBOV GP (WT or 1544A), pFurin was
added (1:5 ratio furin:21 kDa GP plasmid). Polyfect (Qiagen) (10 pl per ug DNA)
was added and the mixture was incubated for 10 min. HEK293T/17cells (~80%
confluent) were then transfected according to the Qiagen protocol. 16-20 h post-
transfection, HEK293T media was replaced with OMEM containing 10 yM DiD
and incubated at 37°C (5% CO) for 4 h. The cells were then washed and
covered with HEK293T medium without phenol red. After 24 h (DiD labeling), the
media was collected, centrifuged (250 x g; 10 min; 4°C), filtered through a 0.45
um syringe filter, aliquoted (1 ml aliquots), and stored at -80°C until used. This
procedure does not yield uniformly DiD-labeled particles. While some particles

contain self-quenching levels of DiD, many do not (12, 13).
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Live-cell Imaging of Double Labeled MLV Pseudovirions and Data Analysis:
MLV pseudovirions (100-500 ul) were diluted to a total volume of 2 ml in imaging
medium (10% FBS-FluoroBrite-DMEM, 10 mM HEPES, 1% sodium pyruvate, 1%
antibiotic/antimycotic, and 1% L-glutamine) and kept on ice. BSC-1 cells which
had been transiently transfected with the indicated plasmid (7-8 hr) and then
replated (50,000 to 150,000 cells) on 35 mm glass bottom tissue culture dishes
(MatTek) for ~16-40 h, were cooled to 4°C for 15-30 min and then covered with
the diluted MLV pseudovirion solution. The dishes were centrifuged for 1 h at 250
X g (4°C) and then immediately transferred to a Nikon Eclipse TE2000-E
microscope equipped with a Yokogawa CSU 10 spinning-disk confocal unit, a
512x512 Hamamatsu 9100¢c-13 EM-BT camera, a motorized stage maintained at
37°C, and a Nikon Perfect Focus System. Samples (in a single focal plane) were
imaged using a 60X/1.45 NA Nikon Plan Apo TIRF oil immersion objective. GFP
fluorescing cells were found within 5-15 min, after which the imaging medium
was replaced with fresh 37°C imaging media, and image acquisition was started
0-15 min later for a total of 60-90 min at 5 or 10 second frame intervals. Where
indicated cells were pre-treated with bafilomycin (200 nM) or E64d (10 uM) for 1
h, and then processed as above. Still images and movies of the tracked, double-
labeled particles were generated using Nikon Elements (Nikon). Data analysis
was carried out using Micro-Manager (28), the Speckle Trackerd plugin (29) in
ImageJ (30), and Microsoft Excel. Individual particles were tracked separately in
each live cell experiment, which entailed image acquisition from 1 or 2 cells per

experiment.
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Figure 1: Experimental Setup. Cartoon (a) and representative image (b) of
double (#1) and single (#s 2, 3) labeled MLV pseudovirions expressing EBOV 21
kDa GP. The image (b) is from an early frame of a movie in which MLV
pseudovirions expressing EBOV 21 kDa GP were added to a BSC-1 cell
expressing NPC1-GFP. Only the red and blue channels are shown, for clarity.
Scale bar, 2 uym. (c) Expected behavior of gag-mKO and DiD (from a double
labeled MLV pseudovirus) upon delivery, hemifusion and fusion in a GFP labeled

endosome.

Figure 2: Pseudovirions bearing 21 kDa EBOV GP fuse in NPC1-GFP-
tagged endosomes. (a, b) Two examples of live cell imaging experiments (of
BSC-1 cells transfected to express NPC1-GFP). Left: Still images of movie
frames taken at the indicated times from Movies 1 and 2, respectively. Asterisks
indicate the pseudovirus being tracked (yellow before fusion; white after fusion).
Right: Corresponding fluorescence intensity traces of DiD, gag-mKO and NPC1-
GFP. Double-headed arrows indicate times of corresponding still frames shown
in the Left panels. ‘A’ and ‘F’ indicate when the indicated pseudovirion associates
(‘A’) and fuses (‘F’) with the NPC1-GFP-marked endosome. In (b) two stages of
association (‘A1’ and ‘A2’) are seen. Scale bar, 1 ym; all panels, same
magpnification. (c) Fraction of observed fusion events that occurred (‘colocalized’)
in endosomes tagged (‘yes’) with NPC1-GFP (43/43 fusion events) or not tagged
(‘no’) with NPC1-GFP (0/43 fusion events): 43/482 double-labeled particles were

observed to fuse and all 43 fusion events occurred in NPC1* LE/Lys. (d) Fusion
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345

346
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348

349

350

351
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353

(separation of red and blue fluorescence) is significantly depressed in cells
treated with 200 nM bafilomycin (baf) (fusion was seen for 0/96 double-labeled
particles observed) or 10 uM E64d (fusion was seen for 0/165 double-labeled
particles observed), or if the pseudovirions contained the 1544 A fusion loop
mutation (fusion was seen for 4/253 double-labeled particles observed). Data in
(d) for WT 21 kDa GP without drug treatment are for the 43 fusion events (43/482
double-labeled particles observed) depicted in Fig. 2c. (e) Relative infectivity of
equivalent volumes of MLV pseudovirions bearing full length WT GP or WT or
I544A 21 kDa GP. Data are from a standard infection assay based on the
luciferase reporter in the pseudovirions. Western blot analysis confirmed that all
forms of GP were incorporated and that comparable amounts of pseudovirions

(based on MLV gag) were employed (data not shown).

Figure 3: Pseudovirions bearing 21 kDa EBOV GP pass through Rab5
endosomes prior to fusion; VSV-G pseudovirions fuse in Rab5 endosomes.
(a) Single particle tracking of double-labeled 21 kDa EBOV GP pseudovirion
entering a BSC-1 cell expressing GFP-Rab5. Left: Still images of movie frames
taken at the indicated times from Movies 3 and 4. (Note that Movie 4 is the
continuation of Movie 3.) Asterisks indicate the pseudovirus being tracked (yellow
before fusion; white after fusion). Right: Corresponding fluorescence intensity
traces of DID, gag-mKO and GFP-Rab5. Scale bar, arrows and labeling are as in
Fig. 2 with the addition that ‘D’ denotes dissociation of Rab5 from the

pseudovirion containing compartment. Note the break in the time scale, which
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corresponds to the transition between Movie 3 and Movie 4. (b) As in (a) but for a
pseudovirion expressing VSV-G (data from Movie 5). Five out of six observed

VSV-G fusion events occurred in Rab5* endosomes.

Figure 4: EBOV enters cells through LE/Lys that contain both NPC1 and
TPC2. (a) Still images (from Movie 6) and (b) Manders coefficients (based on
1,959 endosomes) demonstrating high colocalization between NPC1-GFP and
TPC2- mCherry. (c) Model for EBOV entry pathway: EBOV-GP coated particles
are internalized into the cell and pass through Rab5" endosomes, which mature
(including early endosome (EE) docking and fusion) to generate LE/Lys
containing both NPC1 and TPC2 (designated LE, in the figure). The virus
particles then fuse with the limiting membrane of these LE/Lys. En route GP is
proteolytically processed (e.g., by endosomal cathepsins) and exposed to low pH
and other environmental factors (in NPC1*/TPC2"* LE/Lys) that trigger and

support fusion.
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