

ABSTRACT

25
26 Ebolavirus, a deadly hemorrhagic fever virus, was thought to enter cells through
27 endolysosomes harboring its glycoprotein receptor, Niemann-Pick C1. However,
28 an alternate model was recently proposed in which ebolavirus enters through a
29 later NPC1-negative endosome that contains two pore Ca^{2+} channel 2 (TPC2), a
30 newly identified ebolavirus entry factor. Here, using live cell imaging we provide
31 evidence that in contrast to the new model, ebolavirus enters cells through
32 endolysosomes that contain both NPC1 and TPC2.

33
34 **MAIN TEXT**
35

36 As evidenced by the recent crisis in West Africa, ebolavirus (EBOV) can cause
37 widespread disease and death in human populations. Entry of EBOV into cells,
38 which is mediated by its sole glycoprotein (GP), is a target for therapeutic
39 intervention (1, 2). EBOV entry is unusual in that it requires proteolytic-priming of
40 GP followed by engagement of Niemann-Pick C1 (NPC1), a thirteen-pass
41 membrane protein that aids cholesterol transport from endolysosomes (LE/Lys).
42 Since the realization that NPC1 functions as an EBOV receptor (3-6), models
43 have invoked entry through NPC1^+ LE/Lys (7-9). However, a recent study
44 proposed a very different model: passage through NPC1^+ LE/Lys followed by
45 traffic to and entry in endosomes that lack NPC1 but contain two pore Ca^{2+}
46 channel 2 (TPC2), a recently emerged EBOV entry factor (10, 11). The recent
47 studies for (9) and against (10) entry in NPC1^+ LE/Lys were based on static
48 microscopic assessment of colocalization of virus-like particles (VLPs) with

49 endosomal markers. We found (9) that VLPs bearing EBOV GP enter the
50 cytoplasm shortly after colocalization with NPC1⁺ LE/Lys, assessed at fixed
51 timed intervals in parallel samples analyzing VLP colocalization with NPC1 and
52 VLP entry, which was based on delivery of VP40-β-lactamase into the cytoplasm.
53 A limitation of the static colocalization analyses is that the observer cannot tell if
54 the colocalized particle goes on to fuse. Here, to circumvent that limitation, we
55 used live cell microscopy to determine whether EBOV entry does or does not
56 occur in NPC1⁺ LE/Lys.

57

58 For these experiments we used Moloney Murine Leukemia Virus (MoMLV)
59 particles (Fig. 1) containing gag-mKO (red) in their core and the far-red probe
60 1,1'-dioctadecyl-3,3',3'-tetramethylindodicarbocyanine-4-
61 chlorobenzenesulfonate salt (DiD) incorporated into the pseudovirus membrane
62 during particle production, as described previously (12, 13). We used retroviral
63 pseudoparticles since we previously showed that retroviral particles bearing
64 EBOV GP, either full-length or pre-primed (cleaved *in vitro* to the ~20 kDa form),
65 enter cells with the same kinetics as filamentous EBOV VLPs (9). We prepared
66 particles with a biosynthetically pre-primed (21 kDa) version of EBOV GP since,
67 as seen previously (14), higher entry levels were seen with particles bearing
68 primed vs. full length GP (Fig. 2e). In practice, three types of particles are
69 produced: ones with both gag-mKO and DiD, ones with only gag-mKO, and ones
70 with only DiD (Fig. 1a, b). When a double-labeled (mKO/DiD) particle fuses, the
71 lipid dye (blue) diffuses into the endosome membrane and the core (red) enters

72 the cytoplasm (Fig. 1c). For the studies presented we only analyzed double-labeled particles.

74

75 We analyzed pseudovirus particles with pre-primed (21 kDa) EBOV GP entering
76 live cells expressing either NPC1-GFP (Fig. 2) or GFP-Rab5 (Fig. 3) using
77 spinning disk confocal microscopy. In brief, pseudovirus particles were spinfected
78 onto the surface of BSC-1 cells at 4°C after which the dishes were placed on a
79 spinning disk confocal microscope stage maintained at 37°C. After 5 to 15 min,
80 the medium was replaced with 37°C medium and images were captured at
81 intervals of 5 or 10 frames/sec. Only double-labeled pseudoparticles were
82 monitored, as separation of the content (gag-mKO) from the membrane (DiD)
83 gives the clearest measure of a fusion event (Fig. 1c) (12, 13). In experiments
84 represented in Fig. 2, the cells were transfected to express NPC1-GFP. The
85 particle tracked in Fig. 2a (Movie 1) fused 5.5 min after associating with an
86 NPC1⁺ LE/Lys (green). In this case, fusion was evidenced by an increase of the
87 DiD signal (due to dequenching upon diffusion into the endosome membrane)
88 and loss of the gag-mKO signal that had been associated with the DiD (blue) and
89 NPC1-GFP (green) signals. The particle tracked in Fig. 2b (Movie 2) associated
90 with an NPC1⁺ LE/Lys (green) in two steps, and fused 2 min after the second
91 step. In this case the gag-mKO signal was lost, but the DiD signal remained the
92 same, as seen upon fusion of MoMLV pseudovirions bearing HIV Env in
93 endosomes (13). This is because the starting concentration of DiD in this particle
94 was not high enough to observe a dequenching signal (12, 13).

95

96 All observed EBOV GP-mediated fusion events (43/43; 100%; traces similar to
97 those in Fig. 2a or Fig. 2b) occurred in endosomes tagged with NPC1-GFP (Fig.
98 2c). Fusion did not occur if target cells were pretreated with bafilomycin or E64d,
99 chemical inhibitors that nullify, respectively, the low endosomal pH and cathepsin
100 activities needed for EBOV fusion (14, 15) (Fig. 2d). We have previously shown
101 that these treatments do not block trafficking of EBOV GP particles to NPC1⁺
102 LE/Lys (9). Moreover, if the particles contained the I544A EBOV GP fusion loop
103 mutant (16), the number of fusion events was strongly reduced (Fig. 2d), in line
104 with reduced infectivity of the same particles (Fig. 2e). For WT (21 kDa) EBOV
105 GP pseudoparticles, the dwell times between stable association with an NPC1-
106 GFP-tagged endosome and fusion ranged from 3-10 min, with shorter dwell
107 times seen for traces exemplified in Fig. 2b.

108

109 21 kDa EBOV GP pseudoparticles that fused did so after passage through GFP-
110 Rab5-tagged endosomes (Fig. 3a and Movies 3 and 4; Movie 4 is the
111 continuation of Movie 3). In Movie 3 the pseudovirus associates with a GFP-
112 Rab5 endosome at ~ 3 min. By the end of Movie 3, the endosome has lost most
113 of its GFP-Rab5 signifying its maturation into a later endosome. Continuation of
114 imaging (Movie 4) reveals that the particle fuses much later, at ~ 54 min total
115 timing; based on data presented in Fig. 2, this fusion presumably occurs in a
116 NPC1⁺ LE/Lys. These findings are consistent with previous observations on the
117 route of EBOV entry (9, 17). And, in contrast to particles bearing EBOV GP,

118 which only fused in NPC1-GFP-tagged endosomes (Fig. 2 and Movies 1 and 2),
119 similarly prepared particles bearing VSV-G fused primarily in GFP-Rab5-tagged
120 endosomes (Fig. 3b and Movie 5), consistent with prior results (18, 19).

121

122 Our results provide strong evidence that EBOV GP-mediated fusion does,
123 indeed, occur in NPC1⁺ LE/Lys (3, 4, 6-8, 20). After internalization, EBOV passes
124 through a Rab5⁺ endosome, which then loses Rab5 as it matures into an NPC1⁺
125 LE/Lys. In this compartment, primed GP binds to NPC1 (3, 4, 6), and fusion
126 occurs from within an NPC1⁺ LE/Lys. Our findings are not consistent with the
127 recently proposed model in which EBOV enters from a later putative endosome
128 that lacks NPC1 but contains TPC2 (10, 11). Given the high colocalization of
129 TPC2 with Lamp2 (21) and of Lamp2 with NPC1 (9), we predicted that most
130 NPC1⁺ LE/Lys contain TPC2 (and vice versa). Indeed, NPC1-GFP and TPC2-
131 mCherry (22) are virtually completely colocalized (Fig. 4a, b) and remain together
132 throughout live cell imaging (Movie 6).

133

134 Although TPC2 is required for EBOV entry (10), our results showing (a) that all
135 EBOV GP fusion events occur in NPC1⁺ LE/Lys (Fig. 2c) and (b) that virtually all
136 NPC1⁺ LE/Lys contain TPC2 (Figs. 4a,b; Movie 6) argue against the recently
137 proposed model, which requires dissociation of primed GP from NPC1 and
138 subsequent passage of EBOV particles out of the NPC1 compartment followed
139 by transport to a later NPC1⁺/TPC2⁺ endosome (10, 11). Instead, our results
140 argue that EBOV GP directs fusion in a LE/Lys that contains both NPC1 and

141 TPC2 (Fig. 4c). Hence, rather than playing a direct role in EBOV fusion, a more
142 likely possibility is that TPC2 is required for LE/Lys maturation (23), which is
143 clearly required for EBOV entry (3, 24), and which involves Ca^{2+} dependent
144 endosome fusion (25-27). Proper maturation of NPC1^+ / TPC2^+ LE/Lys is likely
145 needed to provide the environmental cue(s) that trigger(s), and the physical
146 conditions (e.g., lipid composition) that support, EBOV fusion (9).

147

148 **SPECIAL METHODS**

149 **Production of DiD and mKO-labeled MLV Pseudovirions:** Plasmids (0.5 μg 21
150 kDa GP (full length GP for Fig. 2e); 2 μg MLV-gag-mKO; 1 μg pHIT60; 3 μg pFB-
151 luc (Agilent); 2.5 μg pCAGGS) were diluted to 300 μl in phenol red free DMEM
152 without serum or additives. For 21 kDa EBOV GP (WT or I544A), pFurin was
153 added (1:5 ratio furin:21 kDa GP plasmid). Polyfect (Qiagen) (10 μl per μg DNA)
154 was added and the mixture was incubated for 10 min. HEK293T/17 cells (~80%
155 confluent) were then transfected according to the Qiagen protocol. 16-20 h post-
156 transfection, HEK293T media was replaced with OMEM containing 10 μM DiD
157 and incubated at 37°C (5% CO_2) for 4 h. The cells were then washed and
158 covered with HEK293T medium without phenol red. After 24 h (DiD labeling), the
159 media was collected, centrifuged (250 x g; 10 min; 4°C), filtered through a 0.45
160 μm syringe filter, aliquoted (1 ml aliquots), and stored at -80°C until used. This
161 procedure does not yield uniformly DiD-labeled particles. While some particles
162 contain self-quenching levels of DiD, many do not (12, 13).

163

164 **Live-cell Imaging of Double Labeled MLV Pseudovirions and Data Analysis:**
165 MLV pseudovirions (100-500 μ l) were diluted to a total volume of 2 ml in imaging
166 medium (10% FBS-FluoroBrite-DMEM, 10 mM HEPES, 1% sodium pyruvate, 1%
167 antibiotic/antimycotic, and 1% L-glutamine) and kept on ice. BSC-1 cells which
168 had been transiently transfected with the indicated plasmid (7-8 hr) and then
169 replated (50,000 to 150,000 cells) on 35 mm glass bottom tissue culture dishes
170 (MatTek) for ~16-40 h, were cooled to 4°C for 15-30 min and then covered with
171 the diluted MLV pseudovirion solution. The dishes were centrifuged for 1 h at 250
172 \times g (4°C) and then immediately transferred to a Nikon Eclipse TE2000-E
173 microscope equipped with a Yokogawa CSU 10 spinning-disk confocal unit, a
174 512x512 Hamamatsu 9100c-13 EM-BT camera, a motorized stage maintained at
175 37°C, and a Nikon Perfect Focus System. Samples (in a single focal plane) were
176 imaged using a 60X/1.45 NA Nikon Plan Apo TIRF oil immersion objective. GFP
177 fluorescing cells were found within 5-15 min, after which the imaging medium
178 was replaced with fresh 37°C imaging media, and image acquisition was started
179 0-15 min later for a total of 60-90 min at 5 or 10 second frame intervals. Where
180 indicated cells were pre-treated with bafilomycin (200 nM) or E64d (10 μ M) for 1
181 h, and then processed as above. Still images and movies of the tracked, double-
182 labeled particles were generated using Nikon Elements (Nikon). Data analysis
183 was carried out using Micro-Manager (28), the Speckle TrackerJ plugin (29) in
184 ImageJ (30), and Microsoft Excel. Individual particles were tracked separately in
185 each live cell experiment, which entailed image acquisition from 1 or 2 cells per
186 experiment.

187 **ACKNOWLEDGMENTS**

188 The work was supported by R21 AI103601 (to JMW). JS was supported in part
189 by T32AI007046. AG is a Senior Investigator of the Wellcome Trust. GR was
190 funded by an MRC (UK) program grant to AG. We thank the following for
191 plasmids: 21kDa EBOV GP (P. Bates, U. Penn); pFurin (G. Thomas, U. Pitt.);
192 MLV-gag-mKO (G. Melikyan, Emory U.); MLV-gag-pol (pHIT60) (A. Kingsman, U.
193 Oxford); GFP-Rab5 (M. Zerial, (Max Planck Inst., Dresden); NPC1-GFP (M.
194 Scott, Stanford U.).

195

196

197

198

199

200

201

202

203

204

REFERENCES

1. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. *Nature* **514**:47–53.
2. Johansen LM, Dewald LE, Shoemaker CJ, Hoffstrom BG, Lear-Rooney CM, Stossel A, Nelson E, Delos SE, Simmons JA, Grenier JM, Pierce LT, Pajouhesh H, Lehár J, Hensley LE, Glass PJ, White JM, Olinger GG. 2015. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. *Sci Transl Med* **7**:290ra89.
3. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. *Nature* **477**:340–343.
4. Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J. 2011. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. *Nature* **477**:344–348.
5. Haines KM, Vande Burgt NH, Francica JR, Kaletsky RL, Bates P. 2012. Chinese hamster ovary cell lines selected for resistance to ebolavirus glycoprotein mediated infection are defective for NPC1 expression. *Virology* **432**:20–28.
6. Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K. 2012. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. *EMBO J* **31**:1947–1960.
7. Moller-Tank S, Maury W. 2015. Ebola virus entry: a curious and complex series of events. *PLoS Pathog* **11**:e1004731.
8. White JM, Schornberg KL. 2012. A new player in the puzzle of filovirus entry. *Nature Reviews Microbiology* **10**:317–322.
9. Mingo RM, Simmons JA, Shoemaker CJ, Nelson EA, Schornberg KL, D'Souza RS, Casanova JE, White JM. 2015. Ebola Virus and Severe Acute Respiratory Syndrome Coronavirus Display Late Cell Entry Kinetics: Evidence that Transport to NPC1+ Endolysosomes Is a Rate-Defining

236 Step. J Virol **89**:2931–2943.

237 10. **Sakurai Y, Kolokoltsov AA, Chen C-C, Tidwell MW, Bauta WE, Klugbauer N, Grimm C, Wahl-Schott C, Biel M, Davey RA.** 2015. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. *Science* **347**:995–998.

241 11. **Falzarano D, Feldmann H.** 2015. Virology. Delineating Ebola entry. *Science* **347**:947–948.

243 12. **Matos PM, Marin M, Ahn B, Lam W, Santos NC, Melikyan GB.** 2013. Anionic Lipids Are Required for Vesicular Stomatitis Virus G Protein-mediated Single Particle Fusion with Supported Lipid Bilayers. *J Biol Chem* **288**:12416–12425.

247 13. **la Vega de M, Marin M, Kondo N, Miyauchi K, Kim Y, Epanet RF, Epanet RM, Melikyan GB.** 2011. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion. *Retrovirology* **8**:99.

250 14. **Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J.** 2006. Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein. *J Virol* **80**:4174–4178.

253 15. **Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM.** 2005. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. *Science* **308**:1643–1645.

256 16. **Gregory SM, Larsson P, Nelson EA, Kasson PM, White JM, Tamm LK.** 2014. Ebolavirus Entry Requires a Compact Hydrophobic Fist at the Tip of the Fusion Loop. *J Virol* **88**:6636–6649.

259 17. **Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA.** 2010. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. *PLoS Pathog* **6**:e1001110.

263 18. **Mire CE, White JM, Whitt MA.** 2010. A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating. *PLoS Pathog* **6**:e1000994.

266 19. **Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A.** 2009. Host cell factors and functions involved in vesicular stomatitis virus entry. *J Virol* **83**:440–453.

269 20. **Miller EH, Chandran K.** 2012. Filovirus entry into cells - new insights. *Curr Opin Virol* **2**:206–214.

271 21. **Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J,**

272 **Rietdorf K, Teboul L, Chuang K-T, Lin P, Xiao R, Wang C, Zhu Y, Lin Y,**
273 **Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX.** 2009.
274 NAADP mobilizes calcium from acidic organelles through two-pore
275 channels. *Nature* **459**:596–600.

276 22. **Rietdorf K, Funnell TM, Ruas M, Heinemann J, Parrington J, Galione**
277 **A.** 2011. Two-pore Channels Form Homo- and Heterodimers. *J Biol Chem*
278 **286**:37058–37062.

279 23. **Cang C, Zhou Y, Navarro B, Seo Y-J, Aranda K, Shi L, Battaglia-Hsu S,**
280 **Nissim I, Clapham DE, Ren D.** 2013. mTOR regulates lysosomal ATP-
281 sensitive two-pore Na(+) channels to adapt to metabolic state. *Cell*
282 **152**:778–790.

283 24. **van der Kant R, Fish A, Janssen L, Janssen H, Krom S, Ho N,**
284 **Brummelkamp T, Carette J, Rocha N, Neefjes J.** 2013. Late endosomal
285 transport and tethering are coupled processes controlled by RILP and the
286 cholesterol sensor ORP1L. *J Cell Sci* **126**:3462–3474.

287 25. **Luzio JP, Rous BA, Bright NA, Pryor PR, Mullock BM, Piper RC.** 2000.
288 Lysosome-endosome fusion and lysosome biogenesis. *J Cell Sci* **113** (Pt
289 **9**):1515–1524.

290 26. **Cao Q, Zhong XZ, Zou Y, Murrell-Lagnado R, Zhu MX, Dong X-P.** 2015.
291 Calcium release through P2X4 activates calmodulin to promote
292 endolysosomal membrane fusion. *The Journal of Cell Biology* **209**:879–
293 894.

294 27. **Dayam RM, Saric A, Shilliday RE, Botelho RJ.** 2015. The
295 Phosphoinositide-Gated Lysosomal Ca(2+) Channel, TRPML1, Is Required
296 for Phagosome Maturation. *Traffic*.

297 28. **Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman**
298 **N.** 2014. Advanced methods of microscope control using μManager
299 software. *J Biol Methods* **1**.

300 29. **Smith MB, Karatekin E, Gohlke A, Mizuno H, Watanabe N, Vavylonis**
301 **D.** 2011. Interactive, computer-assisted tracking of speckle trajectories in
302 fluorescence microscopy: application to actin polymerization and
303 membrane fusion. *Biophys J* **101**:1794–1804.

304 30. **Schneider CA, Rasband WS, Eliceiri KW.** 2012. NIH Image to *ImageJ*:
305 25 years of image analysis. *Nat Meth* **9**:1794–1804.

306

307

308 **Figure 1: Experimental Setup.** Cartoon (a) and representative image (b) of
309 double (#1) and single (#s 2, 3) labeled MLV pseudovirions expressing EBOV 21
310 kDa GP. The image (b) is from an early frame of a movie in which MLV
311 pseudovirions expressing EBOV 21 kDa GP were added to a BSC-1 cell
312 expressing NPC1-GFP. Only the red and blue channels are shown, for clarity.
313 Scale bar, 2 μ m. (c) Expected behavior of gag-mKO and DiD (from a double
314 labeled MLV pseudovirus) upon delivery, hemifusion and fusion in a GFP labeled
315 endosome.

316

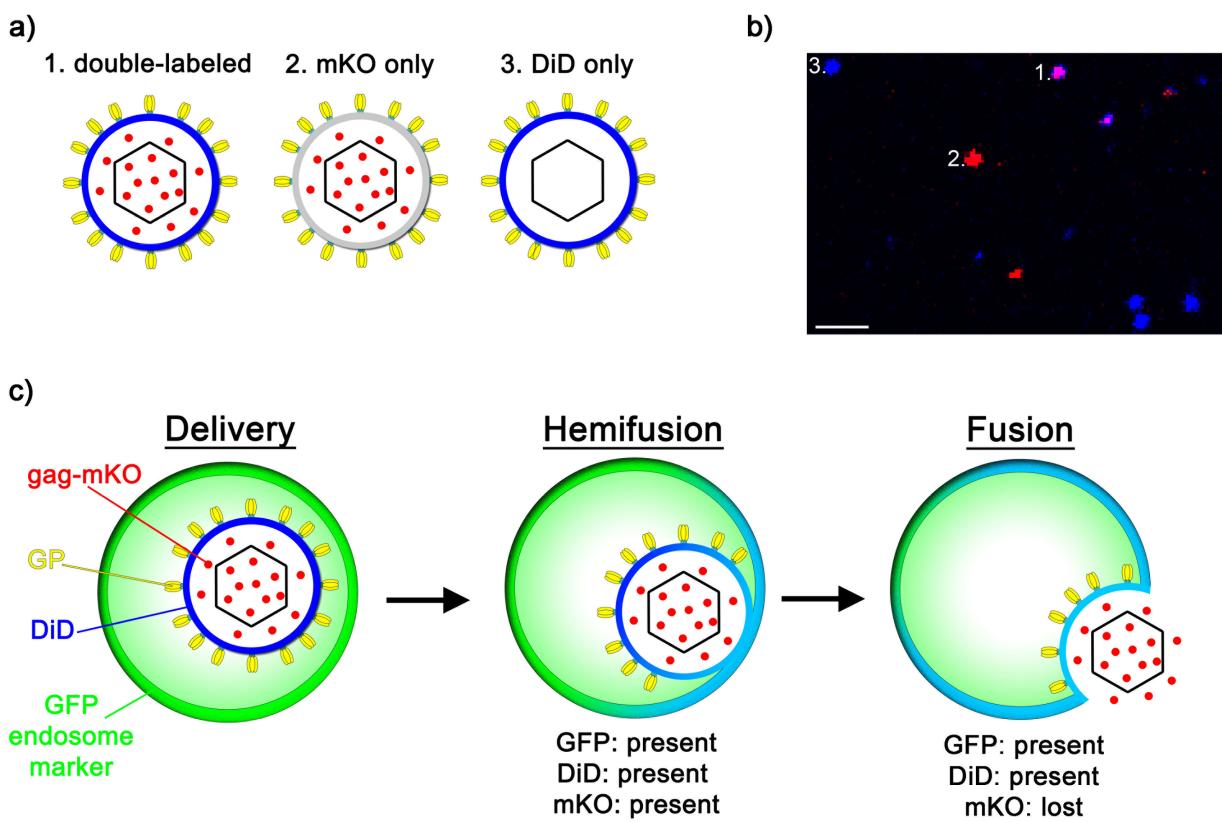
317 **Figure 2: Pseudovirions bearing 21 kDa EBOV GP fuse in NPC1-GFP-
318 tagged endosomes.** (a, b) Two examples of live cell imaging experiments (of
319 BSC-1 cells transfected to express NPC1-GFP). Left: Still images of movie
320 frames taken at the indicated times from Movies 1 and 2, respectively. Asterisks
321 indicate the pseudovirus being tracked (yellow before fusion; white after fusion).
322 Right: Corresponding fluorescence intensity traces of DiD, gag-mKO and NPC1-
323 GFP. Double-headed arrows indicate times of corresponding still frames shown
324 in the Left panels. 'A' and 'F' indicate when the indicated pseudovirion associates
325 ('A') and fuses ('F') with the NPC1-GFP-marked endosome. In (b) two stages of
326 association ('A1' and 'A2') are seen. Scale bar, 1 μ m; all panels, same
327 magnification. (c) Fraction of observed fusion events that occurred ('colocalized')
328 in endosomes tagged ('yes') with NPC1-GFP (43/43 fusion events) or not tagged
329 ('no') with NPC1-GFP (0/43 fusion events): 43/482 double-labeled particles were
330 observed to fuse and all 43 fusion events occurred in NPC1⁺ LE/Lys. (d) Fusion

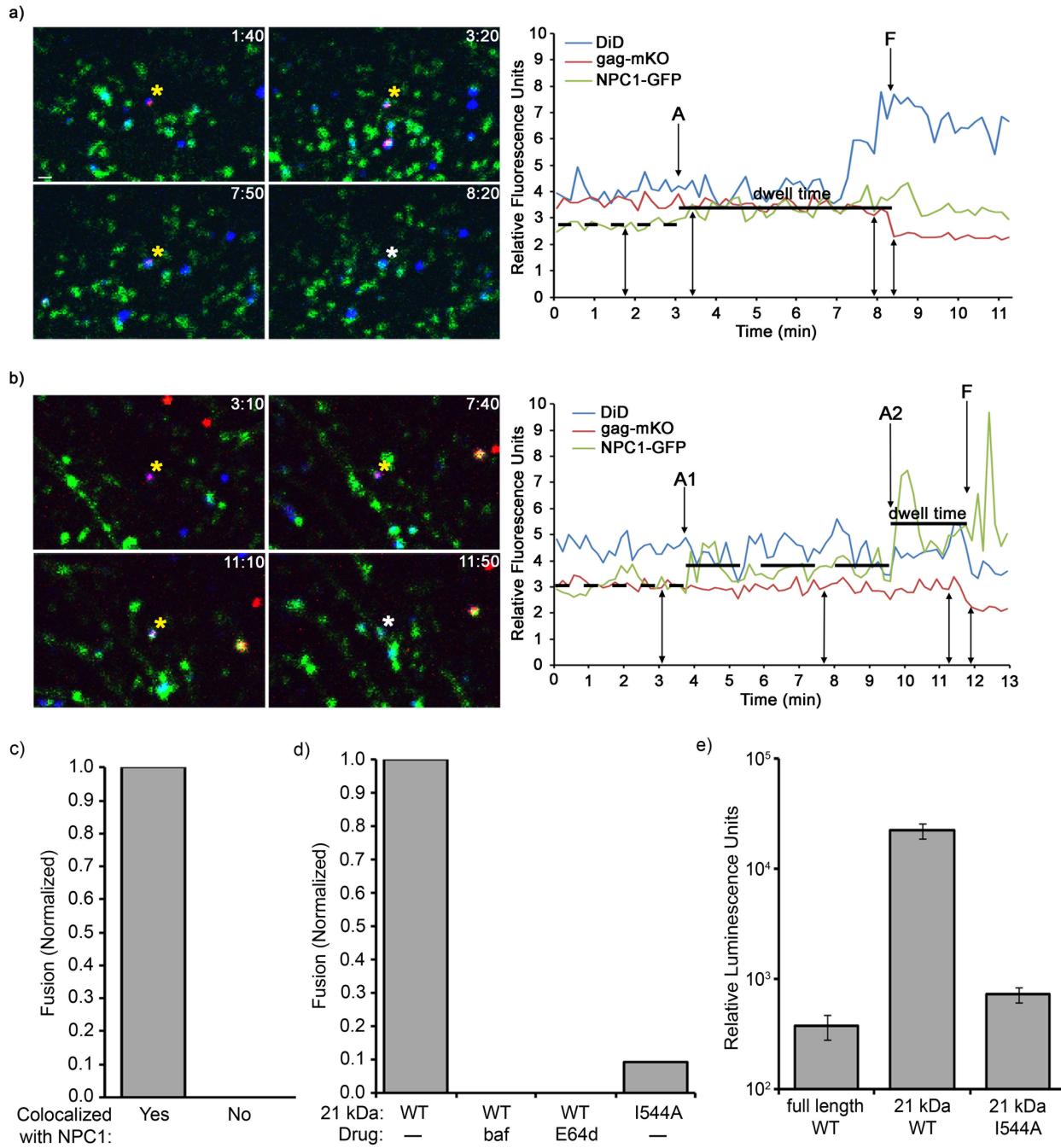
331 (separation of red and blue fluorescence) is significantly depressed in cells
332 treated with 200 nM bafilomycin (baf) (fusion was seen for 0/96 double-labeled
333 particles observed) or 10 μ M E64d (fusion was seen for 0/165 double-labeled
334 particles observed), or if the pseudovirions contained the I544A fusion loop
335 mutation (fusion was seen for 4/253 double-labeled particles observed). Data in
336 (d) for WT 21 kDa GP without drug treatment are for the 43 fusion events (43/482
337 double-labeled particles observed) depicted in Fig. 2c. (e) Relative infectivity of
338 equivalent volumes of MLV pseudovirions bearing full length WT GP or WT or
339 I544A 21 kDa GP. Data are from a standard infection assay based on the
340 luciferase reporter in the pseudovirions. Western blot analysis confirmed that all
341 forms of GP were incorporated and that comparable amounts of pseudovirions
342 (based on MLV gag) were employed (data not shown).

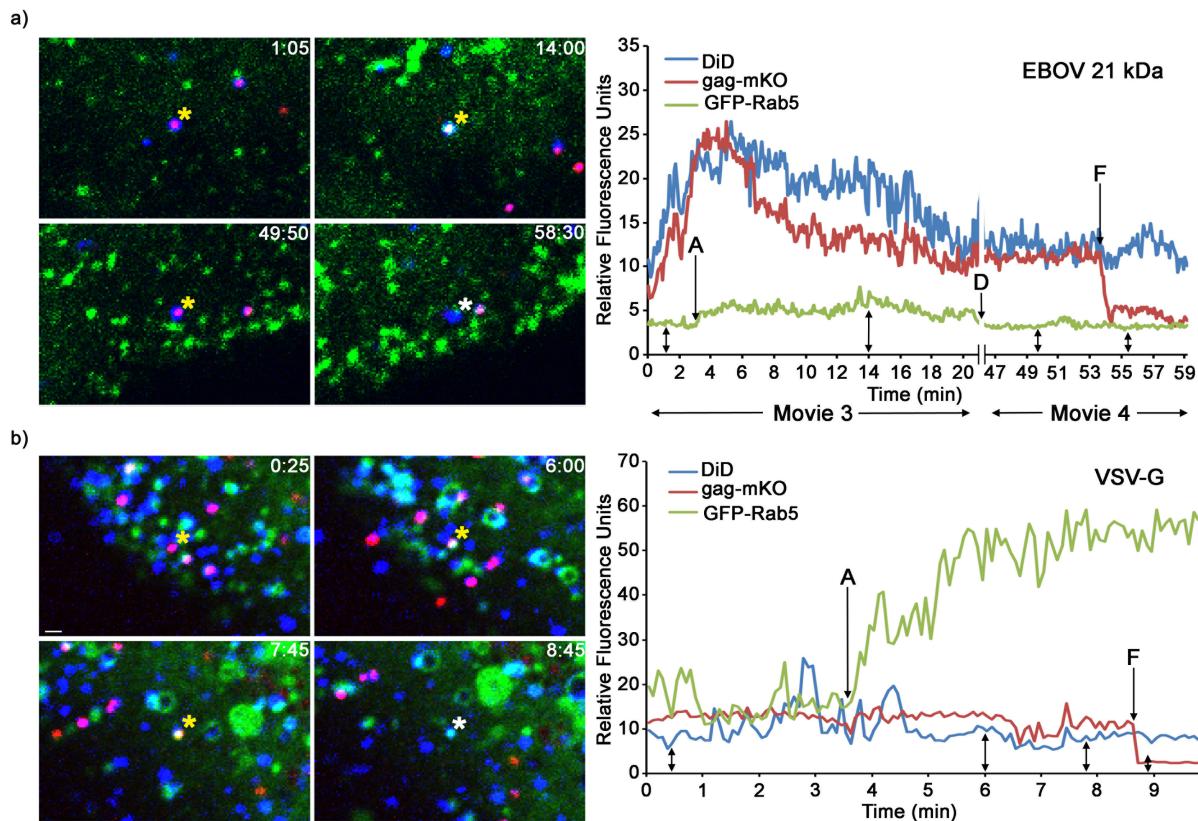
343

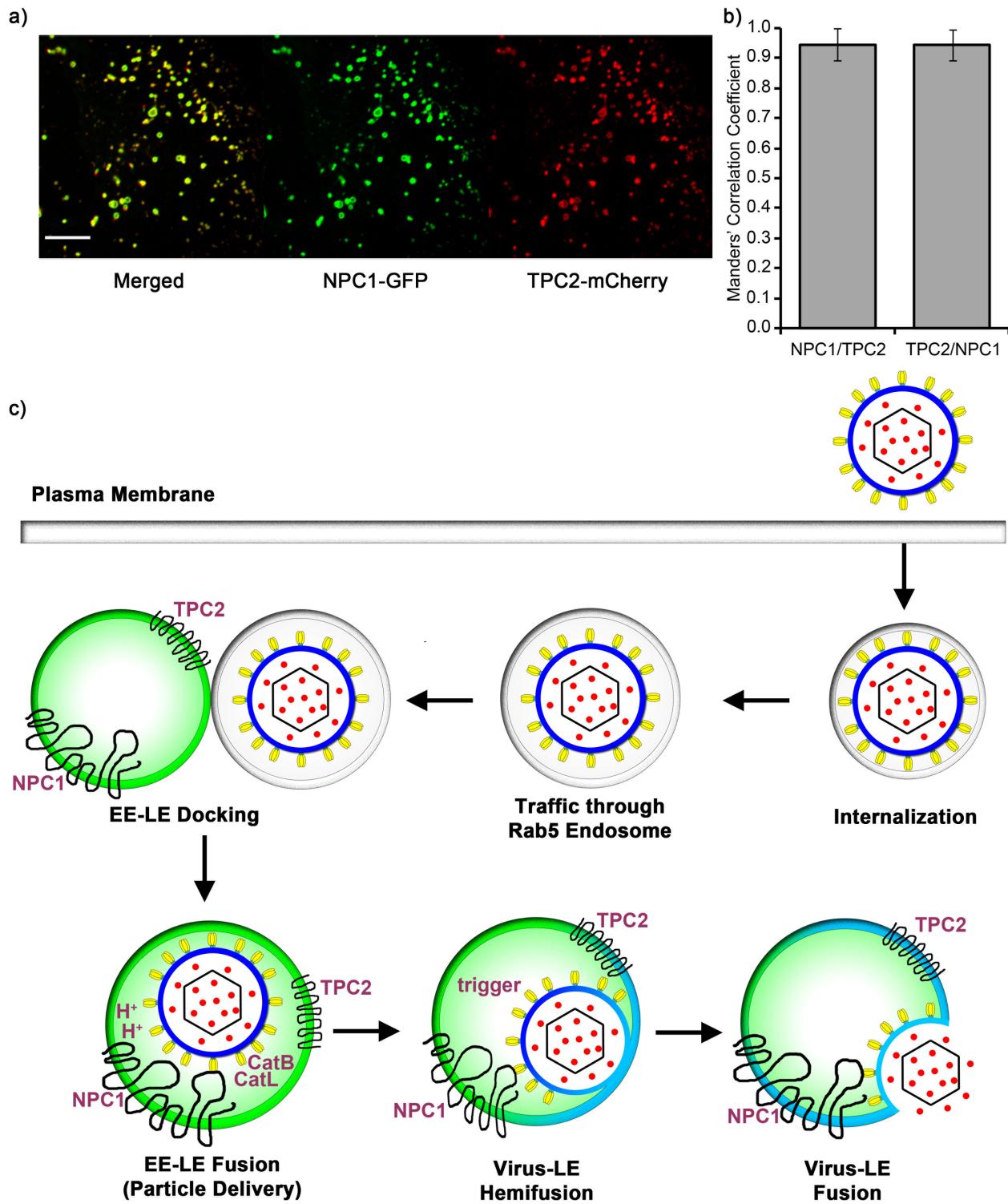
344 **Figure 3: Pseudovirions bearing 21 kDa EBOV GP pass through Rab5**
345 **endosomes prior to fusion; VSV-G pseudovirions fuse in Rab5 endosomes.**
346 (a) Single particle tracking of double-labeled 21 kDa EBOV GP pseudovirion
347 entering a BSC-1 cell expressing GFP-Rab5. Left: Still images of movie frames
348 taken at the indicated times from Movies 3 and 4. (Note that Movie 4 is the
349 continuation of Movie 3.) Asterisks indicate the pseudovirus being tracked (yellow
350 before fusion; white after fusion). Right: Corresponding fluorescence intensity
351 traces of DiD, gag-mKO and GFP-Rab5. Scale bar, arrows and labeling are as in
352 Fig. 2 with the addition that 'D' denotes dissociation of Rab5 from the
353 pseudovirion containing compartment. Note the break in the time scale, which

354 corresponds to the transition between Movie 3 and Movie 4. (b) As in (a) but for a
355 pseudovirion expressing VSV-G (data from Movie 5). Five out of six observed
356 VSV-G fusion events occurred in Rab5⁺ endosomes.


357


358 **Figure 4: EBOV enters cells through LE/Lys that contain both NPC1 and**
359 **TPC2.** (a) Still images (from Movie 6) and (b) Manders coefficients (based on
360 1,959 endosomes) demonstrating high colocalization between NPC1-GFP and
361 TPC2- mCherry. (c) Model for EBOV entry pathway: EBOV-GP coated particles
362 are internalized into the cell and pass through Rab5⁺ endosomes, which mature
363 (including early endosome (EE) docking and fusion) to generate LE/Lys
364 containing both NPC1 and TPC2 (designated LE, in the figure). The virus
365 particles then fuse with the limiting membrane of these LE/Lys. En route GP is
366 proteolytically processed (e.g., by endosomal cathepsins) and exposed to low pH
367 and other environmental factors (in NPC1⁺/TPC2⁺ LE/Lys) that trigger and
368 support fusion.


369


370

371

